BTC EmbeddedPlatform - Tutorial

Formal Verification

Version 2.5

o gL

BTC |

Content

A A A

About Formal Verification
Start BTC EmbeddedPlatform

Perform a Formal Verification

Debuqg a Vector

Recheck Proof on fixed version

Perform a Formal Verification — Input Restrictions

Reporting

BTC | 5

About Formal Verification

Formal Verification is a method that is used to ensure the
correctness of a system under test against a Formal
Specification of its required behavior.

In addition to the Formal Specification technology, the Formal Verification
allows to perform a complete mathematical proof on the system-under-test,
to give evidence that a requirement can never be violated.

This means that the user gets a guarantee that there is no combination of
input signals and calibrations which can lead the system into a state where

the requirement is violated.

This tutorial is based on the tutorial for Formal Specification.
You need to go through that tutorial at first.

BTC | 5

Start BTC EmbeddedPlatform

« To prepare the tutorial, please copy the folder with the demo model to a location with
standard access rights and ensure that the “Read Only” attribute of the tutorials folder is
not set after copying it. The location of the demo model usually is “C:\Program
Files\BTC\<version>\tutorials\PowerWindow\PowerWindow_TargetLink”.

« Start BTC EmbeddedPlatform from the Windows Start Menu, Matlab or the Desktop
shortcut if available. Once the BTC EmbeddedPlatform has started, please get an
overview of the tool. The welcome screen shown below provides a good entry point for
different topics.

Welcome to Create a new Profile Recent Profiles
BTC EmbeddedPlatform® 1 dsonce Tugetink
C-Code

[dSPACE SDF

Embedded Platform Basics :=|| Formal Specification Back to Back Testing
Basic functions and features of the platform. N Express your functional requirements (semi-)formally. ~ Perform back-to-back testing between two
Basics Guide Optionally generate RTT-Observer for HIL testing. implementations, for example, between model and code

Formal Specification Guide Back to Back Testing User Guide

Concepts and Use Cases
Tutorial for Profile Creation Tutorial for Formal Specification Tuto.nal for Structural Test Generation and Back-to-Back
Tutorial for Real Time Testing Observer Testing
7.2 Requirement Based Testing
~B Formal Verification
Define and execute functional test cases on your design.
Optionally includes Formal Testing. Formally prove the correctness of your design using Model

Requirement-based Testing Guide Checking technology.

Tutorial for Requirements-based Testing Formal Verification Guide

Tutorial for Formal Test and Requirements-based test Lutorial for Formal Verification

generation

BTC | i

Perform a Formal Verification (1/2)

1. First of all open the profile created during the Formal Specification tutorial.

2. Switch to the Formal Verification Perspective and select the formal requirement F REQ_PW _4 1 and
right-click on the item in the tree.

Select New - Proof from the upcoming context menu.
4. Select the new proof item PR_F REQ_PW 4 1 thatis now attached to the formal requirement in the tree

Open the Advanced Settings: For proofs that are expected to be fulfilled, the ISAT engine is a good
choice. To force EmbeddedValidator to use this engine, unselect the others and choose “fulfilled” as

Expected result. pppe— -
6. Now run the proof by clicking on the (@ button | # Freef- Sener! ¢
Name: [PRF_REQ_PW_4 1 |
Group By: | Scopes v |g F_REQ PW 41 FormaIRaquirement:|F_REQ_PW_4_1 V| powerwindow_tl_v03 [C-Code] Missing execution | €3
W @} power_window_controller =| Formal Requirement - 9
ﬁ} detect_obstacle_endstop Input restrictions [JUse local settings | Edit
@} validate_driver o o
%} Validate_passenger Time limit (s) E N time limit
=] F_REQ_PW_11 Search depth (steps) [No search depth limit
=| F_REQ_PW 41 Expected result |fulfilled v‘
v = Reparts New ’ ';..9 i b ~ Advanced settings
. Loop unroll (iterations) |32 |
The Idea Of th|S prOOf IS tO Verlfy, If the Memory limit (ME) U;eallavailahlememnry
requirement can never be violated by any 0 e
possible input combination over time. It provides Coreengines | 1 ATOP
a mathematical proof that a requirement can
never be violated. In the case it can be violated, Assumption check [Use when applicable
a counter example is provided. The counter S
example can reproduce the violation in a debug
environment.

Perform a Formal Verification (2/2)

powerwindow_tl_v03 [C-Code] Viclated (4 steps) | 03 | | Zg %Sl

As you can see, BTC EmbeddedPlatform has found a scenario that violates the
requirement in the 4t step. Click on the (ko button to have a look on the vector. The
screenshot below shows that there is an obstacle detected in Step 2 and that in Step 3
the window is not moving down.

The model has a sampling time of 0.01, so each step is 10 ms and you expect the
window to move down in the next step, because the requirement says the window has
to start moving down in 10 ms.

: Witness Trace « Fri Mar 22 14:31:40 CET 2019

Mame Mode Step 0 Step 1 Step 2 Step 3

Formal Requirement Status Viclated
Commitment SUP phase Startup—"(Tr) V(T —Tr—"%(Act) —
obstacle_detection output 0.0 0.0 1.0 0.0
move_up output 0.0 1.0 0.0 0.0
driver_up input 0.0 1.0 0.0 1.0
driver_down input 0.0 0.0 0.0 1.0
passenger_up input 0.0 0.0 0.0 1.0
passenger_down input 1.0 1.0 1.0 0.0

To find the source of the violation, debug the created vector, please.

BTC | 5

Debug a vector (1/3)

Debug Environment
Exporting debug environment for Witness trace of PR_F_REC_PW 4 1.

Options
Type | TL MIL

Automatically start debug environment
[] Self-Contained Model
[] Show Expected Values

Directory

| EfPowerWindow!\PowerWindow_TargetLink\TL44

Browse...

Cancel

Debugging the vector will help to find the
root cause directly in the model or in the
generated code. In this case you will debug
it in the model.

1. Click on the ®! icon in the proof dashboard

2. Inthe upcoming dialog in the “Options”
section select TL_MIL from the drop down.

3. Inthe directory section you can change the
location for the debug model.

4. Click on the “Finish” button to create a
debug model.

BTC | 5

Debug a vector (2/3)

Navigate to the TargetLink subsystem as seen below.

Show the value labels of the ports that you need to observe.
By simulating step-wise you can see the values on each port Smuation] analysis Code Tools Targettink Lelp

. . . & Update Diagram Ctrl+D
N eaCh p0|nt Of tlme @ Model Configuration Parameters Ctrl+E
. . . Mode »
* Asyou can see, an obstacle is recognized in step 3 Data Display »[" Remove AllValue Labels
(T=0,02). You expect the window to move down in the o Vot Lol e Hoverm
neXt Step (“mOVG_dOWH” (T+1) o) | 'I(')opgtigclj:s\.’alue Labels When Clicked

* As shown on the bottom right, the actual value in step 4 is
‘0’ which means that the obstacle is not recognized.

- = EICHRE]
T T S ———— oo | N SE B
File Ede Wiew Duplay Diagram Simutstion Analysis Code Jooks Targetink Help
E-fec 4 BE-B- 4@k @ - somen
prvegrr e
@ [Falmo7azissn v [Fylpower_vandow_contoler ¥ [Balsubsystem » [Ba]power _wndow_controler b - -
a
e b —

8 g R—
o = . e
B e e

o e e E——_E] oo e (]

B] :?;"'" — @
e e R []\y

L e I R .

e . J o > S

oy .
vaidiste_pesserge =
Tl e .
i | I crecsteon D ..
.ﬂ aas .
- ndow POt
N -
e

“““““ ‘ - BTC | gpcsces

Debug a vector (3/3)

The problem in this case is that the state chart, that computes the output signals, is not
correctly implemented. The transition which indicates an obstacle detection is
connected to the wrong sub-state.

» Please connect this transition to the outer border (“safe” state) to fix the problem.

* Execute the simulation step-wise again and check that the obstacle will be
observed correctly and the “emergencyDown” state becomes active.

[Pa|modelzverify b [Pajbtc b [Pa]Subsystem b [Pajbtc b [Pa|power_window_controller » [Scontrol B
(<af N\ N\
~ e
d:;’:.'Ne”' : [endstop_bottom | after(emergency_down_time tick]] il
=
vel
—
Jp [
Sl fer(auto_up. time,tick) 9 imetick) [obftacke]
21 [passenger_neutral] utral]
:
[Esctansae] F)
J e/
[driver_up] [driver_up]
Up
ter(auto_up_time,tick) auto_up_time tick)
[driver_neutral] iver_neutral]
‘autoDriverUp UtoDriverUp
~ J .
< | i 3 TR
ed 100% T=0.020 \mmiszel | FixedStepDiscrete T=0.020 Poused | FixedStepDiscrete

BTC | 5

Recheck Proof on fixed version

Open the original model in Matlab and fix this issue in the state chart so the changes can be
proven again.

1. Please update the architecture to propagate the changes in the model to the profile data.
Therefore select “Import > Update Architectures”. The updated model will now be taken into
account.

2. Please re-execute the proof of requirement REQ_PW _4 1 to check whether the model
behaves correctly now.

As shown by the execution report, the requirement cannot be violated any more, so the model and
the generated code work fine in this regard.

PR_F_REQ_PW. 4 1 A= g

@ Proof - General @

: BTC EmbeddedValidator - training.epp Name: | PR_F_REQLPW 4.1 |

File Edit |I"I"Ip0|"t EXFIDI't View HE|FI Formal Requirement: | F_REQ_PW 41 v| powerwindow_t] w03 [C-Code] Fuffilled | €3

. () NewP =& Architecture

. Updale Architectures h Input restrictions

= = Time limit (=) 1 Ne time limit
Search depth (steps) Mo search depth limit
Expected result | fulfilled v|
Now the most safety critical requirement of the model is proven successfully to never fail.
BTc embedded
systems

10

Perform a Formal Verification — Local Input Restrictions

Excursus

BTC EmbeddedPlatform takes Min and Max values into account. They can come from
the model, DataDictionary (TargetLink) or be imported once a profile is created.

However, for the Formal Verification you might want to have several proofs with
different input restrictions to e.g. freeze some calibration variables to a specific value or

reduce or even extend the Min and Max ranges for input signals.

BTC EmbeddedPlatform allows the user to define proof specific input restrictions.
Therefore tick the checkbox “Use local settings” and click on the edit button to modify
your proof specific input restrictions. To return to the general input restriction untick the

checkbox again.
Edit input restrictions for PR_F_REQ_ PW 4.1
Define input restriction settings E>‘?
¥
- Scope | power_window_controller cateet
Proof - General | |
[Show relative psth []Show typerange fuy foy
type filter text
MName: | PR_F_REQ_PW_ 4.1
Data type Resolution Offset Modelrange Lower bound Upper bound
. const volatile... 0.001 0.0 [0.35, 0.45] 035 0.45
Formal Requirement: | F_REC_PW_4_1 constvolstile .. 210 00 00,250 00 2550
const volatile ... 240 0.0 [0.0, 255.0] 00 255.0
const volatile ... 240 0.0 [0.0, 255.0] 00 2550
Ulnt16 0.001 0.0 [0.0, 0.45] 0.0 045
Uint16 0.001 00 0.0, 0.45) 00 045
1cti | Use local settings it Eool 220 00 100,100 & 0
InFIUt restrictions g S — Bool 240 0.0 [0.0, 1.0] 0.0 1.0
Bool 270 00 (0.0, 1.0] 0.0 1.0
I;IIICIiIII;L = Bool 20 0.0 [0.0,1.0] 00 10
Input restrictions
Lower bound Upper bound Apply | Resetto model range | Use defaults for all parameters
BTC | st
systems

11

Reporting (1/2)

During testing, the dashboards show the current status of the test project, related to the
selected item in the Profile Navigator. In addition it is sometimes necessary to export
these information for documentation of the current status or presenting the test status to
the customer. For the Formal Verification BTC EmbeddedPlatform provides the Formal
Verification report.

To create the report, right-click on the requirements source and select Create Formal
Verification Report from the upcoming context menu. Creating the report on the
requirements source will take all requirements and therefore all proofs into account. If you
create the report on a single requirement, only one proof is reported.

File Edit Import Export View Help
(=) New Profile = [Open Profile [] Save Profile <o Back = Forvard

w Ig

=% Import Architecture v |7

Group By: | Requirements PR_F_RECQ_PW 41

v Requirements & Proof - General

~ | Infi o o)
= Open in separate Window

12

=
v =
A4

Unlink

= 9

X

Execute on
Cut

Copy
Paste

Delete

Update

Ctrl+C
Ctrl+V
Delete

- Report Create Formal Verification Report

= | PR_F_REQ_PW_4_1

| F_REQ_PW _4._1

Use local settings | Edit

» powerwindow t v03 [C-Code] [

!
!

BTC

embedded
systems

Reporting (2/2)

Formal Verification Report

= == The Formal Verification Report is showing the proof

e result, the textual and formalized requirements as well
as Assumptions and the used macros. Each section can
be expanded or collapsed.

The available sections are:

Meta information
Summary
Requirements (textual and formal)

Environmental Assumptions

a & D E

Macros

v Reports 2. Summary

The report can easily be
exported with a right_cﬁck on ¥ B FormalVesfication L 3. F_REQ_PW 4

Interface

the report in the Profile

Copy

Paste Ctrl+V

Navigator and select X Des

Rename Report...

“Export Report ...” from the & oponhepor. [y
context menu.

BTC | 5

13

BTC Embedded Systems AG
Gerhard-Stalling-StralRe 19, 26135 Oldenburg, GERMANY

Tel.: +49 441 969738 - 50
Fax: +49 441 969738 - 64

www.btc-es.de

BTC

embedded
systems

http://www.btc-es.de/

