
BTC EmbeddedPlatform - Tutorial

Formal Verification

Version 2.5

Content

1. About Formal Verification

2. Start BTC EmbeddedPlatform

3. Perform a Formal Verification

4. Debug a Vector

5. Recheck Proof on fixed version

6. Perform a Formal Verification – Input Restrictions

7. Reporting

About Formal Verification

Formal Verification is a method that is used to ensure the

correctness of a system under test against a Formal

Specification of its required behavior.

In addition to the Formal Specification technology, the Formal Verification

allows to perform a complete mathematical proof on the system-under-test,

to give evidence that a requirement can never be violated.

This means that the user gets a guarantee that there is no combination of

input signals and calibrations which can lead the system into a state where

the requirement is violated.

This tutorial is based on the tutorial for Formal Specification.

You need to go through that tutorial at first.

3

Start BTC EmbeddedPlatform

• To prepare the tutorial, please copy the folder with the demo model to a location with

standard access rights and ensure that the “Read Only” attribute of the tutorials folder is

not set after copying it. The location of the demo model usually is “C:\Program

Files\BTC\<version>\tutorials\PowerWindow\PowerWindow_TargetLink”.

• Start BTC EmbeddedPlatform from the Windows Start Menu, Matlab or the Desktop

shortcut if available. Once the BTC EmbeddedPlatform has started, please get an

overview of the tool. The welcome screen shown below provides a good entry point for

different topics.

4

1. First of all open the profile created during the Formal Specification tutorial.

2. Switch to the Formal Verification Perspective and select the formal requirement F_REQ_PW_4_1 and

right-click on the item in the tree.

3. Select New → Proof from the upcoming context menu.

4. Select the new proof item PR_F_REQ_PW_4_1 that is now attached to the formal requirement in the tree

5. Open the Advanced Settings: For proofs that are expected to be fulfilled, the ISAT engine is a good

choice. To force EmbeddedValidator to use this engine, unselect the others and choose “fulfilled” as

Expected result.

6. Now run the proof by clicking on the button

Perform a Formal Verification (1/2)

5

The idea of this proof is to verify, if the

requirement can never be violated by any

possible input combination over time. It provides

a mathematical proof that a requirement can

never be violated. In the case it can be violated,

a counter example is provided. The counter

example can reproduce the violation in a debug

environment.

As you can see, BTC EmbeddedPlatform has found a scenario that violates the

requirement in the 4th step. Click on the button to have a look on the vector. The

screenshot below shows that there is an obstacle detected in Step 2 and that in Step 3

the window is not moving down.

The model has a sampling time of 0.01, so each step is 10 ms and you expect the

window to move down in the next step, because the requirement says the window has

to start moving down in 10 ms.

To find the source of the violation, debug the created vector, please.

Perform a Formal Verification (2/2)

6

Debugging the vector will help to find the

root cause directly in the model or in the

generated code. In this case you will debug

it in the model.

1. Click on the icon in the proof dashboard

2. In the upcoming dialog in the “Options”

section select TL_MIL from the drop down.

3. In the directory section you can change the

location for the debug model.

4. Click on the “Finish” button to create a

debug model.

Debug a vector (1/3)

7

Debug a vector (2/3)

8

Navigate to the TargetLink subsystem as seen below.

Show the value labels of the ports that you need to observe.

By simulating step-wise you can see the values on each port

in each point of time.

• As you can see, an obstacle is recognized in step 3

(T=0,02). You expect the window to move down in the

next step (“move_down” (T+1) == 1).

• As shown on the bottom right, the actual value in step 4 is

‘0’ which means that the obstacle is not recognized.

Debug a vector (3/3)

9

The problem in this case is that the state chart, that computes the output signals, is not

correctly implemented. The transition which indicates an obstacle detection is

connected to the wrong sub-state.

• Please connect this transition to the outer border (“safe” state) to fix the problem.

• Execute the simulation step-wise again and check that the obstacle will be

observed correctly and the “emergencyDown” state becomes active.

Open the original model in Matlab and fix this issue in the state chart so the changes can be

proven again.

1. Please update the architecture to propagate the changes in the model to the profile data.

Therefore select “Import → Update Architectures”. The updated model will now be taken into

account.

2. Please re-execute the proof of requirement REQ_PW_4_1 to check whether the model

behaves correctly now.

As shown by the execution report, the requirement cannot be violated any more, so the model and

the generated code work fine in this regard.

Now the most safety critical requirement of the model is proven successfully to never fail.

Recheck Proof on fixed version

10

Excursus

BTC EmbeddedPlatform takes Min and Max values into account. They can come from

the model, DataDictionary (TargetLink) or be imported once a profile is created.

However, for the Formal Verification you might want to have several proofs with

different input restrictions to e.g. freeze some calibration variables to a specific value or

reduce or even extend the Min and Max ranges for input signals.

BTC EmbeddedPlatform allows the user to define proof specific input restrictions.

Therefore tick the checkbox “Use local settings” and click on the edit button to modify

your proof specific input restrictions. To return to the general input restriction untick the

checkbox again.

Perform a Formal Verification – Local Input Restrictions

11

During testing, the dashboards show the current status of the test project, related to the

selected item in the Profile Navigator. In addition it is sometimes necessary to export

these information for documentation of the current status or presenting the test status to

the customer. For the Formal Verification BTC EmbeddedPlatform provides the Formal

Verification report.

To create the report, right-click on the requirements source and select Create Formal

Verification Report from the upcoming context menu. Creating the report on the

requirements source will take all requirements and therefore all proofs into account. If you

create the report on a single requirement, only one proof is reported.

Reporting (1/2)

12

The Formal Verification Report is showing the proof

result, the textual and formalized requirements as well

as Assumptions and the used macros. Each section can

be expanded or collapsed.

The available sections are:

1. Meta information

2. Summary

3. Requirements (textual and formal)

4. Environmental Assumptions

5. Macros

The report can easily be

exported with a right-click on

the report in the Profile

Navigator and select

“Export Report …” from the

context menu.

Reporting (2/2)

13

Formal Verification Report

BTC Embedded Systems AG

Gerhard-Stalling-Straße 19, 26135 Oldenburg, GERMANY

Tel.: +49 441 969738 - 50

Fax: +49 441 969738 - 64

www.btc-es.de

http://www.btc-es.de/

