
BTC EmbeddedPlatform - Tutorial

Formal Test and Requirements-based Test Generation with BTC EmbeddedPlatform

Version 2.5



Content

1. About Formal Test

2. About Requirements-based Automatic Test 

Case Generation

3. Scenario

4. Prerequisites and additional information

5. Prepare the tutorial and start BTC 

EmbeddedPlatform

6. Import Test Cases

7. Execute Test Cases

8. Formal Test Execution Result

9. Creating Test Cases automatically

10. Repeat Test Cases Execution

11. Reporting



About Formal Test

What is a Formal Test?

Formal Testing is a method that uses existing simulation results to verify if they fulfill or 

violate one or more formalized requirements. 

What is the goal of a Formal Test?

The goal of this approach is to clarify whether the System under Test (SUT) behaves 

correctly as specified in the (formalized) requirements. Therefore the SUT will be 

stimulated with test cases that have been created either manually or automatically or 

even coming from a HIL simulation. The output of the SUT will be verified against a 

formalized requirement to see whether the requirement is fulfilled or violated by the data 

stream. If a correctly formalized requirement is violated this indicates that there is a 

misbehavior in the model that should be fixed.

This tutorial describes a standard workflow for Formal Test with BTC 

EmbeddedPlatform to prove the correctness of the model regarding a requirement. 

Regarding the formalization of requirements please refer to the corresponding tutorial. 

3



Scenario 1/2

4

For this tutorial we will have a look at one requirement of the 

demo model „Power Window Controller“ which is a controller for 

the passenger side window.

Here are some key features of the controller:

• The window can be controlled from both, the passengers 

and the drivers side 

• A driver command overrules a passenger command

• A tap function is provided to open or close the window 

completely if the switch is pressed for less than 1 second. 

• It also provides an obstacle detection with the following 

properties:

• If an obstacle is detected the window moves down 

immediately for 10 cm 

• Independent from current driver and passenger requests

• Independent from active tap function 

On the next slide you can find a list of requirements regarding 

the Power Window Controller.



Scenario (2/2)

REQ_ID Description

REQ_PW_1_1 If the driver up switch is pressed, the window has to start moving up within 50 [ms].

REQ_PW_1_2 If the driver down switch is pressed, the window has to start moving down within 50 [ms].

REQ_PW_2_1
If the driver up or the passenger up switch is pressed for at most auto_up_time, the auto-up mode is activated 

and the window continues to move up.

REQ_PW_2_2
If the driver down or the passenger down switch is pressed for at most auto_down_time, the auto-down mode 

is activated and the window continues to move down.

REQ_PW_3 The driver commands have priority over the passenger commands.

REQ_PW_4_1 If an obstacle is detected, the window has to start moving down within 10 [ms].

REQ_PW_4_2
When an obstacle is detected, the window has to move down for emergency_down_time or until the bottom 

end is reached.

5



Prerequisites and additional information

6

To be able to perform a Formal Test in BTC EmbeddedPlatform, the requirement first has to 

be transformed into a formal representation. 

In other words, the requirement itself has to be unambiguous and machine-readable. BTC 

EmbeddedPlatform offers different capabilities that allow the transformation of an informal 

specification into a formal one by enriching it with a clear syntax and semantic. 

Please copy the demo folder from the installation directory to any other directory that allows to 

modify files without administrator rights.

To start with this tutorial, you need to create a profile. If not already done, please refer to the 

“Tutorial for Formal Specification.pdf” tutorial to create a profile and formalize requirements. Please 

use the powerwindow_tl_v03.mdl for the architecture import.



• Start BTC EmbeddedPlatform from the Windows Start Menu, Matlab or the Desktop 

shortcut if available. Once BTC EmbeddedPlatform has started, please get an overview 

of the tool.

• BTC EmbeddedPlatform provides several use cases.

• Requirements-based Testing

• Back-to-Back Testing

• Formal Specification

• Formal Verification

• All use cases are based on the

same data structure and therefore

can exchange information and data

between the use cases.

• Each use case provides an own

view on the data fitting to its

workflow.

Prepare the tutorial and start BTC EmbeddedPlatform

7



Please, select the Requirements-

based Testing perspective, if not 

already done, and then click on the 

“Import Test Cases” button in the 

toolbar.

In the upcoming dialog, “Excel” is 

selected as default import format. 

Click Next.

Please, navigate to the import 

directory that contains the test case 

“REQ_PW_1_1_TestCase.xlsx” and 

select this test case below.

Press the “Import” button to complete 

this step. 

Import Test Cases

8

As already mentioned, the goal of a Formal Test is to check existing simulation runs against (formal) 

requirements. Therefore we will now import a test case that shall be used to test the first requirement 

(REQ_PW_1_1). 



Execute Test Cases

9

By default test cases are stored inside the “Unlinked Test 

Cases” folder. As the imported test case has been written 

for requirement number 1, we can drag and drop it onto 

the requirement. This way we ensure, that the test case is 

linked to the desired requirement.

To execute the test cases press the “Execute Test Cases” 

button in the toolbar. Select “Requirements” from the drop 

down in the upcoming dialog and both “Execution Modes”. 

Please press the “Execute” button to execute the test 

cases.

The Formal Test will be executed automatically once

the execution records are available.



Formal Test Execution Result

10

The results of the simulation will be 

visible inside the “Requirements 

Source” dashboard. As displayed on 

the left, the test case indeed covers 

requirement No. 1 and the test 

status is “Passed”.

Moreover it is visible that the test case has also influenced the analysis result for the second formal 

requirement (REQ_PW_4_1) even though the test case doesn’t belong to this requirement.

This cross-checking mechanism which tests all test cases against all requirements is an important 

feature of the Formal Test and an advantage compared to requirements-based testing, as it is able to 

detect side effects on the one hand and to increase the depth of the test process on the other hand.

The Test Status of the second

requirement is “Inconclusive” in

this case as neither the trigger

nor the action condition have

been fulfilled by the imported

test case. 

This means, that REQ_PW_4_1

is not violated by our test case

but it’s also not yet tested.



About Requirement-based Automatic Test Case Generation

What is Requirement-based Automatic Test Case Generation

In contrast to the traditional approach, where test cases are created manually including 

stimulus and expected system behavior, the automated approach generates test cases 

based on formal requirements for both stimulus and expected values. 

What is the goal of Requirement-based Automatic Test Case Generation?

The goal of this approach is to find test cases that cover certain coverage goals, e.g. an 

action end event using model checking technologies.

The second part of this tutorial shows how to generate test cases from a formal 

requirement.

11



Creating Test Cases automatically

12

In order to cover the second requirement we could either import 

or create a second test case manually or we can let BTC 

EmbeddedPlatform create test cases automatically. 

• Right-click on “REQ_PW_4_1” and choose “Generate Test 

Cases” from the context menu.

• In the upcoming user dialog, please select “Use behavior 

from implementation” in order to use the systems behavior 

as the intended behavior. 

• Press the “Finish” button in order to start the test case 

generation process. A progress bar will indicate the current 

status.

• As soon as the execution has finished a Graphical User 

Interface will occur which summarizes the found vector(s).



Repeat Test Cases Execution

13

A new test case is generated that fulfills the requirement. However, the analysis of the requirements is 

based on the execution records and not on the test case itself. In order to affect the test result, the test 

cases have to be executed a second time using the same approach as before. This time also the newly 

created test case will be taken into account during the simulation.

As seen below the Test Status as well as the Formal Requirement Status and the Formal Requirement 

Coverage have changed. Now both requirements are covered by the available test cases and both tests 

are passed.

Even though the tests have been successful so far, this does not mean that the requirements can never 

be violated. It only means that there are currently no test cases (or to be precise execution records) 

available that violate the requirements. To be sure whether or not a requirement can be violated at all, 

BTC EmbeddedPlatform can be used with its use case Formal Verification. 

For more information regarding this use case, please refer to the “Tutorial for Formal Verification.pdf”.



During testing, the dashboards show the current status of the test project, related to the selected item 

in the Profile Navigator. In addition it is sometimes necessary to export these information for 

documentation of the current status or presenting the test status to the customer. For Requirements-

based testing with Formal Test BTC EmbeddedPlatform provides four different reports.

The Test Execution Report shows the simulation results of one architecture, e.g. TL_MIL or SIL. If 

this report is created on a requirements source, if does contain the Requirements Coverage in addition.

The Formal Test Report shows the simulation results of one architecture, e.g. TL_MIL and its 

coverage of the formalized requirements.

The Code Analysis Report contains the code coverage, based on the test cases in the profile, for 

each subsystem for all test goals on code level, e.g. Statement, Decision, Condition and MC/DC 

coverage.

The Model Coverage Report shows the model coverage, based on the test cases in the profile, for 

each subsystem for all test goals on model level, e.g. Statement, Decision, Condition and MC/DC 

coverage. Please note: To create a Model Coverage Report, you need to have a Simulink Verification 

and Validation toolbox license.

The Interface Report shows all interface objects that are part of the system under test and lists them 

for each Scope separately.

A report can be generated based on a Requirements Source, Test Case folder and a Scope.

Reporting (1/7)

14



To create a report, right-click on one of the items in the Profile Navigator and select the 

desired report from the context menu.

Reporting (2/7)

15

Test Execution Report Code Coverage Report Model Coverage Report

Once a report is created, it is listed in 

the Profile Navigator as a new item. The 

report can be exported with a right-click 

on the item and select “Export Report 

…” from the context menu.

Formal Test Report
Interface Report



Reporting (3/7)

16

Formal Test Report

The Formal Test Report is showing the requirements 

coverage of an simulation of test cases on a specific 

architecture, e.g. TL_MIL. Each section can be 

expanded or collapsed.

The available section are:

1. Meta information

2. Summary of available formal requirements

3. A detailed view for each requirement

4. Environmental Assumptions

5. Macros



Reporting (4/7)

17

Test Execution Report

The Test Execution Report is showing the result of an 

simulation of test cases on a specific architecture, e.g. 

TL_MIL. Each section can be expanded or collapsed.

The available section are:

1. Meta information

2. Global Tolerances

3. Summary

4. Requirements Traceability

5. Test Execution Results Overview

6. Detailed Execution Results



Reporting (5/7)

18

Code Analysis Report

…

The Code Analysis Report is showing the coverage of 

all available coverage goals on code level based on the 

current existing test cases in the profile. Each section of 

the report can be expanded or collapsed.

The available section are:

1. Meta information

2. A section for each subsystem

a) Scope path

b) Engine Configuration, if there are any

c) Overview of the coverage/robustness goals

d) Coverage/Robustness statistics

e) A detailed view of the coverage goals



Reporting (6/7)

19

Interface Report

…

The Interface Report gives an overview of all interface 

objects of each Scope in the profile. Beside the naming 

of the interface object this covers the data type, 

resolution, offset and minimum and maximum value 

ranges. Each section of the report can be expanded or 

collapsed.

The available section are:

1. Meta information

2. A section for each subsystem describing the 

interfaces



Reporting (7/7)

20

Model Coverage Report

The Model Coverage Report is showing the coverage of 

all available coverage goals on model level based on the 

current existing vectors in the profile. Each section of 

the report can be expanded or collapsed.

The available section are:

1. General Information

2. Coverage statistics for the top level and below for 

each subsystem



BTC Embedded Systems AG

Gerhard-Stalling-Straße 19, 26135 Oldenburg, GERMANY

Tel.: +49 441 969738 - 50

Fax: +49 441 969738 - 64

www.btc-es.de

http://www.btc-es.de/

