
Testing Object-Oriented Software



Problems in object-oriented testing [Binder]

Each level in the class hierarchy creates a new context for inherited
features:

⇒ correctness of superclass does not guarantee that of subclass

Q: Do superclass methods work correctly within context of subclass ?

For B inheriting method m from A, we should know:

1. can we completely skip re-testing B.m ?

2. are the test cases for A.m enough ?

3. or do we need new test cases ? which ?



Liskov Substitution Principle

subclass can be used anywhere instead of superclass

pre(m, Class) ⇒ pre(m, SubClass)

post(m, SubClass) ⇒ post(m, Class)

inv(SubClass) ⇒ inv(Class)

But: we must know invariants to check them
At the minimum, we analyze which fields are modified



The classic example: rectangle and square

public class Rectangle {

private int height; private int width;

public void setHeight(int value) { this.height = value; }

public void setWidth(int value) { this.width = value; }

public int getArea() { return this.height * this.width; }

}

public class Square extends Rectangle {

public void setHeight(int value) { super.setHeight(value);

super.setWidth(value); }

public void setWidth(int value) { super.setWidth(value);

super.setHeight(value); }

}



More object-oriented testing problems

Interactions between method calls and object state are complex
Are there undesired interactions between methods ?

Polymorphism and dynamic binding increase number of execution paths
make static analysis more difficult

void foo(A obj) { obj.m(); }

could call method m for any subclass of A

Encapsulation limits state observability when testing

Dynamic binding increases potential for misunderstanding and error

Interface errors more likely due to many small components

Control of object state is difficult: distributed throughout program



More object-oriented testing problems

Interactions between method calls and object state are complex
Are there undesired interactions between methods ?

Polymorphism and dynamic binding increase number of execution paths
make static analysis more difficult

void foo(A obj) { obj.m(); }

could call method m for any subclass of A

Encapsulation limits state observability when testing

Dynamic binding increases potential for misunderstanding and error

Interface errors more likely due to many small components

Control of object state is difficult: distributed throughout program



More object-oriented testing problems

Interactions between method calls and object state are complex
Are there undesired interactions between methods ?

Polymorphism and dynamic binding increase number of execution paths
make static analysis more difficult

void foo(A obj) { obj.m(); }

could call method m for any subclass of A

Encapsulation limits state observability when testing

Dynamic binding increases potential for misunderstanding and error

Interface errors more likely due to many small components

Control of object state is difficult: distributed throughout program



More object-oriented testing problems

Interactions between method calls and object state are complex
Are there undesired interactions between methods ?

Polymorphism and dynamic binding increase number of execution paths
make static analysis more difficult

void foo(A obj) { obj.m(); }

could call method m for any subclass of A

Encapsulation limits state observability when testing

Dynamic binding increases potential for misunderstanding and error

Interface errors more likely due to many small components

Control of object state is difficult: distributed throughout program



More object-oriented testing problems

Interactions between method calls and object state are complex
Are there undesired interactions between methods ?

Polymorphism and dynamic binding increase number of execution paths
make static analysis more difficult

void foo(A obj) { obj.m(); }

could call method m for any subclass of A

Encapsulation limits state observability when testing

Dynamic binding increases potential for misunderstanding and error

Interface errors more likely due to many small components

Control of object state is difficult: distributed throughout program



More object-oriented testing problems

Interactions between method calls and object state are complex
Are there undesired interactions between methods ?

Polymorphism and dynamic binding increase number of execution paths
make static analysis more difficult

void foo(A obj) { obj.m(); }

could call method m for any subclass of A

Encapsulation limits state observability when testing

Dynamic binding increases potential for misunderstanding and error

Interface errors more likely due to many small components

Control of object state is difficult: distributed throughout program



Specific problems in OO testing (cont.)

[McGregor&Sykes] Due to fundamental language constructs

Objects
information hiding ⇒ harder to observe state in testing
have persistent state ⇒ inconsistency can cause errors later
have a lifetime ⇒ errors if constructed/destructed at wrong time

Methods/messages ⇒ important for testing object interactions
may be called in improper object state
have parameters (used/updated): are those in the right state?
do they correctly implement their interfaces? (subtyping errors)



Specific problems in OO testing (cont.)

[McGregor&Sykes] Due to fundamental language constructs

Objects
information hiding ⇒ harder to observe state in testing
have persistent state ⇒ inconsistency can cause errors later
have a lifetime ⇒ errors if constructed/destructed at wrong time

Methods/messages ⇒ important for testing object interactions
may be called in improper object state
have parameters (used/updated): are those in the right state?
do they correctly implement their interfaces? (subtyping errors)



Specific problems in OO testing (cont.)

[McGregor&Sykes] Due to fundamental language constructs

Objects
information hiding ⇒ harder to observe state in testing
have persistent state ⇒ inconsistency can cause errors later
have a lifetime ⇒ errors if constructed/destructed at wrong time

Methods/messages ⇒ important for testing object interactions
may be called in improper object state
have parameters (used/updated): are those in the right state?
do they correctly implement their interfaces? (subtyping errors)



Specific problems in OO testing (cont.)

Interface = behavioral specification

Preconditions for correct behavior may be handled in two ways:
contract-based: assumed
defensive programming: checked

⇒ influences complexity of implementation and testing
simplifies/complicates class/integration testing

Note: defensive programming should also check results! (although in
practice, often receiver is considered trustworthy, only caller not)



Specific problems in OO testing (cont.)

Interface = behavioral specification

Preconditions for correct behavior may be handled in two ways:
contract-based: assumed
defensive programming: checked

⇒ influences complexity of implementation and testing
simplifies/complicates class/integration testing

Note: defensive programming should also check results! (although in
practice, often receiver is considered trustworthy, only caller not)



Specific problems in OO testing (cont.)

Class

specification: method pre/postconditions, class invariants ⇒ tested!
Specification must also be validated !

implementation: error opportunities through
Constructors/destructors (incorrect initialization/deallocation)
Inter-class collabor.: members or object param. may have errors
Do clients have the means to check preconditions? (hidden state?)



Specific problems in OO testing (cont.)

Inheritance

May propagate errors to descendants ⇒ stopped by timely testing

Typical OO code style: short methods, little processing, many calls
⇒ code/decision coverage loses relevance

Offers a mechanism for test reuse, from super- to subclass

Testing may detect inheritance just for code reuse
without inheriting specification



Specific problems in OO testing (cont.)

Polymorphism

Testing must check observing the substitution principle

From the perspective of observable states in program/testing:

Subclass keeps all observable states and transitions among them
May add transitions (supplementary behavior)
May add observable states (sub-states of initial ones)

Yo-yo problem: difficulty of understanding/testing sequence of calls
⇒ likely error: call wrong method implementation from hierarchy

Abstraction in class hierachy reflected in tests (general → specific)



Specific problems in OO testing (cont.)

Polymorphism

Testing must check observing the substitution principle

From the perspective of observable states in program/testing:

Subclass keeps all observable states and transitions among them
May add transitions (supplementary behavior)
May add observable states (sub-states of initial ones)

Yo-yo problem: difficulty of understanding/testing sequence of calls
⇒ likely error: call wrong method implementation from hierarchy

Abstraction in class hierachy reflected in tests (general → specific)



Specific problems in OO testing (cont.)

Polymorphism

Testing must check observing the substitution principle

From the perspective of observable states in program/testing:

Subclass keeps all observable states and transitions among them
May add transitions (supplementary behavior)
May add observable states (sub-states of initial ones)

Yo-yo problem: difficulty of understanding/testing sequence of calls
⇒ likely error: call wrong method implementation from hierarchy

Abstraction in class hierachy reflected in tests (general → specific)



Specific problems in OO testing (cont.)

Polymorphism

Testing must check observing the substitution principle

From the perspective of observable states in program/testing:

Subclass keeps all observable states and transitions among them
May add transitions (supplementary behavior)
May add observable states (sub-states of initial ones)

Yo-yo problem: difficulty of understanding/testing sequence of calls
⇒ likely error: call wrong method implementation from hierarchy

Abstraction in class hierachy reflected in tests (general → specific)



Testing axioms

[Weyuker ’86,’88], reformulated for OO by [Perry & Kaiser ’90]

Antiextensionality:

Different implementations to same functionality need different tests.

1) A redefined method needs other/more tests (depending on code)

2) The same method when inherited needs different class-based tests
e.g.: A: +m(), +n()

B: +m()

C: +n() m calls n()

⇒ C::m inherits B::m but calls another n() ⇒ different tests!



Testing axioms (cont.)

Antidecomposition:

A test set adequate for a program need not be adequate for one of its
components

(it could be exercised in a different context to that program)

⇒ Adequate testing for a client is insufficient for a library
(client could use only part of the functionality)

⇒ If deriving from a tested class, must still test inherited methods
(code added may interact with the state ⇒ with inherited methods)



Testing axioms (cont.)

Anticomposition:

A test set adequate for components need not be adequate for their
combination.

brief argument for sequential combination:
p program paths in P and q paths Q ⇒ p · q > p + q paths P; Q
even more when execution alternates between P and Q

⇒ Unit/module testing cannot replace integration testing!

⇒ A method tested in the base class is not tested sufficiently in the
derived class (it may be composed in different ways).

General Multiple Change

Programs with the same control flow but different operations/values need
different test suites.



Error examples: Encapsulation

Set class with methods:
add(element) // precondition: element not in set

// raise Duplicate exception otherwise
remove(element)

Testing: two consecutive add(x) raise exception
but element might still be added a second time

⇒ error discovered only with 2 × add, 2 × remove

harder to test than with directly observable object state



Error examples: Inheritance

Problem: implementing a class requires understanding details and
representation conditions of all base classes to be sure of correct
implementation

⇒ Inheritance weakens encapsulation

Two main classes of problems:

1) initialization
forgetting correct initialization of superclass

2) forgetting redefinition of method accounting for class specifics
copy methods or isEqual



Coverage in object-oriented testing

Q: what are relevant object/method combinations to consider ?

target-methods criterion: all callable method implementations

receiver-classes criterion: all possible receiver classes

Example [Rountev, Milanova, Ryder 2004]

class A { public void m() { ... } }

class B extends A { public void m() { ... } }

class C extends A { ... }

A a;

...

a.m();

target-methods: test calls to la A.m(), B.m()
receiver-classes (more comprehensive): test a of type A, B, C



Fault patterns in OO testing [Offutt]

Inconsistent type use: Deriv used inconsistently also as Base
e.g.: Stack (access at one end) derived from Vector (indexed access)
using Vector::removeAt(idx) on Stack violates class invariant
Cause: design error. Detection: test class invariants

State definition errors

1) Overriden methods interact differently with object state
Detection: check that methods define/use same members

2) Local redefinition of a member (hides inherited member)
inherited methods still access the old member ⇒ inconsistency

3) Redefined method computes same member differently
⇒ state inconsistency with respect to the (inherited) specification

Constructor errors: calling non-final method
(overridden in subclass, method has thus access to uninitialized state)

Visibility anomalies



Fault patterns in OO testing [Offutt]

Inconsistent type use: Deriv used inconsistently also as Base
e.g.: Stack (access at one end) derived from Vector (indexed access)
using Vector::removeAt(idx) on Stack violates class invariant
Cause: design error. Detection: test class invariants

State definition errors

1) Overriden methods interact differently with object state
Detection: check that methods define/use same members

2) Local redefinition of a member (hides inherited member)
inherited methods still access the old member ⇒ inconsistency

3) Redefined method computes same member differently
⇒ state inconsistency with respect to the (inherited) specification

Constructor errors: calling non-final method
(overridden in subclass, method has thus access to uninitialized state)

Visibility anomalies



Fault patterns in OO testing [Offutt]

Inconsistent type use: Deriv used inconsistently also as Base
e.g.: Stack (access at one end) derived from Vector (indexed access)
using Vector::removeAt(idx) on Stack violates class invariant
Cause: design error. Detection: test class invariants

State definition errors

1) Overriden methods interact differently with object state
Detection: check that methods define/use same members

2) Local redefinition of a member (hides inherited member)
inherited methods still access the old member ⇒ inconsistency

3) Redefined method computes same member differently
⇒ state inconsistency with respect to the (inherited) specification

Constructor errors: calling non-final method
(overridden in subclass, method has thus access to uninitialized state)

Visibility anomalies



Specifics of OO testing

Testing levels: intra- and inter-method, intra- and inter-class

Visibility problem (caused by encapsulation):
explicit flattening of class hierarchy
better: allowing data access by testing framework
or: use getter methods to access state

Polymorphism: tests need to instantiate all possible subtypes for an
object declared as a base type

static analysis to find all possibilities (class hierarchy analysis)

Dataflow testing
Data and changed state are important;

line/branch coverage gives little info on small method bodies
Coupling: defined by def-use pairs b/w methods
i.e. a member defined(written) in m1() and used(read) by m2()
used to select methods that are tested together



Specifics of OO testing

Testing levels: intra- and inter-method, intra- and inter-class

Visibility problem (caused by encapsulation):
explicit flattening of class hierarchy
better: allowing data access by testing framework
or: use getter methods to access state

Polymorphism: tests need to instantiate all possible subtypes for an
object declared as a base type

static analysis to find all possibilities (class hierarchy analysis)

Dataflow testing
Data and changed state are important;

line/branch coverage gives little info on small method bodies
Coupling: defined by def-use pairs b/w methods
i.e. a member defined(written) in m1() and used(read) by m2()
used to select methods that are tested together



Specifics of OO testing

Testing levels: intra- and inter-method, intra- and inter-class

Visibility problem (caused by encapsulation):
explicit flattening of class hierarchy
better: allowing data access by testing framework
or: use getter methods to access state

Polymorphism: tests need to instantiate all possible subtypes for an
object declared as a base type

static analysis to find all possibilities (class hierarchy analysis)

Dataflow testing
Data and changed state are important;

line/branch coverage gives little info on small method bodies
Coupling: defined by def-use pairs b/w methods
i.e. a member defined(written) in m1() and used(read) by m2()
used to select methods that are tested together



Specifics of OO testing

Testing levels: intra- and inter-method, intra- and inter-class

Visibility problem (caused by encapsulation):
explicit flattening of class hierarchy
better: allowing data access by testing framework
or: use getter methods to access state

Polymorphism: tests need to instantiate all possible subtypes for an
object declared as a base type

static analysis to find all possibilities (class hierarchy analysis)

Dataflow testing
Data and changed state are important;

line/branch coverage gives little info on small method bodies
Coupling: defined by def-use pairs b/w methods
i.e. a member defined(written) in m1() and used(read) by m2()
used to select methods that are tested together



Testing class hierarchies

Distinguish: tests starting from specification or implementation (code)
S: new tests for old methods, when specification changes
S: new postconditions/invariants for old tests in derived classes
I: new tests for new methods, depending on desired coverage

Examples:

Change a method m(): retest methods that interact:
methods calling m and that have coupling with m

Change m() in superclass: re-test m() + interacting methods;
re-test m() in context of subclass(es)

Overwrite m(): augment tests of Base::m for adequate coverage

Overwrite m() used by Base::n: test n in subclass

Change of interface (abstract class): re-test whole hierarchy



Testing class hierarchies

Distinguish: tests starting from specification or implementation (code)
S: new tests for old methods, when specification changes
S: new postconditions/invariants for old tests in derived classes
I: new tests for new methods, depending on desired coverage

Examples:

Change a method m(): retest methods that interact:
methods calling m and that have coupling with m

Change m() in superclass: re-test m() + interacting methods;
re-test m() in context of subclass(es)

Overwrite m(): augment tests of Base::m for adequate coverage

Overwrite m() used by Base::n: test n in subclass

Change of interface (abstract class): re-test whole hierarchy



OO testing patterns [Binder]

At method level
Category/Partition (I/O analysis, partitioning/equivalence)
Combinational Function Test (condition coverage)
Recursive Function Test
Polymorphic Message Test (client of a polymorphic server)

At class level
Invariant Boundaries (valid/invalid values for class invariant)
Nonmodal Class Test (class w/o sequencing constraints)
Modal Class Test (class with sequencing constraints)
Quasi-Modal Class Test (constraints dependent on state)

For reusable components
Abstract Class Test (interface)
Generic Class Test (parameterized)
New Framework Test
Popular Framework Test (changes in an API)



OO testing patterns [Binder]

At method level
Category/Partition (I/O analysis, partitioning/equivalence)
Combinational Function Test (condition coverage)
Recursive Function Test
Polymorphic Message Test (client of a polymorphic server)

At class level
Invariant Boundaries (valid/invalid values for class invariant)
Nonmodal Class Test (class w/o sequencing constraints)
Modal Class Test (class with sequencing constraints)
Quasi-Modal Class Test (constraints dependent on state)

For reusable components
Abstract Class Test (interface)
Generic Class Test (parameterized)
New Framework Test
Popular Framework Test (changes in an API)



OO testing patterns [Binder]

At method level
Category/Partition (I/O analysis, partitioning/equivalence)
Combinational Function Test (condition coverage)
Recursive Function Test
Polymorphic Message Test (client of a polymorphic server)

At class level
Invariant Boundaries (valid/invalid values for class invariant)
Nonmodal Class Test (class w/o sequencing constraints)
Modal Class Test (class with sequencing constraints)
Quasi-Modal Class Test (constraints dependent on state)

For reusable components
Abstract Class Test (interface)
Generic Class Test (parameterized)
New Framework Test
Popular Framework Test (changes in an API)



OO testing patterns [Binder]

At method level
Category/Partition (I/O analysis, partitioning/equivalence)
Combinational Function Test (condition coverage)
Recursive Function Test
Polymorphic Message Test (client of a polymorphic server)

At class level
Invariant Boundaries (valid/invalid values for class invariant)
Nonmodal Class Test (class w/o sequencing constraints)
Modal Class Test (class with sequencing constraints)
Quasi-Modal Class Test (constraints dependent on state)

For reusable components
Abstract Class Test (interface)
Generic Class Test (parameterized)
New Framework Test
Popular Framework Test (changes in an API)



Example: Polymorphic Message Test

For a virtual method call (in a client), test all possible classes to which
the call could be made

Need to deal with / potential errors:
– incorrect preconditions on call for some subclasses
– call to unintended class (reference to unintended type)
– change of class hierarchy (affects code/tests)

Dynamic binding is similar to (multi-way) branch in code
⇒ covering all instances ' branch coverage



Nonmodal Class Test

Nonmodal class: accepts any method call in any state
e.g. DateTime accepts any sequence of get/set (use/def)

Types of test behavior

– define-operation: set to valid input / check answer
– define-exception: set to invalid input / check answer
– define-exception-corruption: state not corrupt after exception

– use-exception-test: normal return after use
– use-correct-return: return with correct value after use
– use-corruption: object not corrupt after use



(Quasi-)Modal Class Test

Modal Class Test:
class with fixed constraints on operation order create a model with object
state and transitions between them

Problems:
– missing transition: an operation is rejected in a valid state
– incorrect action / response for a method in a given state
– invalid resulting state: method causes transition to wrong state
– corrupt resulting state
– message accepted when it should be rejected

Quasi-modal class test
method order constraints change depending on state
e.g. container / collection classes (full/empty), etc.

Typically, we’d like N+ coverage (any method in any state)



(Quasi-)Modal Class Test

Modal Class Test:
class with fixed constraints on operation order create a model with object
state and transitions between them

Problems:
– missing transition: an operation is rejected in a valid state
– incorrect action / response for a method in a given state
– invalid resulting state: method causes transition to wrong state
– corrupt resulting state
– message accepted when it should be rejected

Quasi-modal class test
method order constraints change depending on state
e.g. container / collection classes (full/empty), etc.

Typically, we’d like N+ coverage (any method in any state)



Testing at class level

Small Pop approach
– write class, write tests, run (no other details/intermediate steps)
– good for simple classes in stable contexts

Alpha-Omega approach
– run object from creation to destruction through all methods

– constructors
– accesors (get)
– predicates
– modifiers (set)
– iterators
– destructors


