
Verification of concurrent programs

Errors in concurrent programs

Deadlock

Livelock (loop without useful progress)

Starvation: inequitable resource access
(threads that do not get access, though no deadlock overall)

Race conditions
in particular, data races

Not observing atomicity
simple source statement (++) may not be atomic in binary code
variables covering several memory words (non-atomic writes)

Errors in concurrent programs

Deadlock

Livelock (loop without useful progress)

Starvation: inequitable resource access
(threads that do not get access, though no deadlock overall)

Race conditions
in particular, data races

Not observing atomicity
simple source statement (++) may not be atomic in binary code
variables covering several memory words (non-atomic writes)

Errors in concurrent programs

Deadlock

Livelock (loop without useful progress)

Starvation: inequitable resource access
(threads that do not get access, though no deadlock overall)

Race conditions
in particular, data races

Not observing atomicity
simple source statement (++) may not be atomic in binary code
variables covering several memory words (non-atomic writes)

Errors in concurrent programs

Deadlock

Livelock (loop without useful progress)

Starvation: inequitable resource access
(threads that do not get access, though no deadlock overall)

Race conditions
in particular, data races

Not observing atomicity
simple source statement (++) may not be atomic in binary code
variables covering several memory words (non-atomic writes)

Errors in concurrent programs

Deadlock

Livelock (loop without useful progress)

Starvation: inequitable resource access
(threads that do not get access, though no deadlock overall)

Race conditions
in particular, data races

Not observing atomicity
simple source statement (++) may not be atomic in binary code
variables covering several memory words (non-atomic writes)

Errors in concurrent programs

Deadlock

Livelock (loop without useful progress)

Starvation: inequitable resource access
(threads that do not get access, though no deadlock overall)

Race conditions
in particular, data races

Not observing atomicity
simple source statement (++) may not be atomic in binary code
variables covering several memory words (non-atomic writes)

Synchronization primitives

Concurrent programs have synchronization primitives
but how are they implemented ?

e.g. with hardware support: test_and_set instruction

// busy wait
// returns old value of lock
// sets it to 1 if it was 0
while (test_and_set(lock) == 1);

more general: compare-and-swap

int cmpxchg(int *x, int new, int old) { // atomic
int current = *x;
if (current == old) *x = new;
return current; // change done iff it returns old

}

Mutual exclusion: Peterson’s algorithm

while (1) {
L1: flag[0] = true; // try
L2: turn = 1; // other’s turn
L3: while (flag[1] && turn==1)

; // wait
C0: flag[0] = false;

}

while (1) {
R1: flag[1] = true; //try
R2: turn = 0; // other’s turn
R3: while (flag[0] && turn==0)

; // wait
C1: flag[1] = false;

}

Designed for single-processor shared memory
Not safe in a multicore setting (relaxed memory consistency)

Data races

Happen when two threads access a variable, and
at least one does a write access
the threads are not explicitly synchronized

Analyzing race conditions is complicated by reorderings within a
thread (through compiler optimizations)

init: x = 0; y = 0; Possible outcomes (r1, r2): (0, 0)
t1: r1 = x; t2: r2 = y; (1, 0)

y = 2; x = 1; (0, 2)

But by reordering in t1 and t2 we could obtain r1 = 1, r2 = 2 !

This result does not match sequential consistency
(that we are intuitively used to)

all memory accesses correspond to total order (linear), and
order of accesses in any thread is program order

Data races

Happen when two threads access a variable, and
at least one does a write access
the threads are not explicitly synchronized

Analyzing race conditions is complicated by reorderings within a
thread (through compiler optimizations)

init: x = 0; y = 0; Possible outcomes (r1, r2): (0, 0)
t1: r1 = x; t2: r2 = y; (1, 0)

y = 2; x = 1; (0, 2)

But by reordering in t1 and t2 we could obtain r1 = 1, r2 = 2 !

This result does not match sequential consistency
(that we are intuitively used to)

all memory accesses correspond to total order (linear), and
order of accesses in any thread is program order

Data races

Happen when two threads access a variable, and
at least one does a write access
the threads are not explicitly synchronized

Analyzing race conditions is complicated by reorderings within a
thread (through compiler optimizations)

init: x = 0; y = 0; Possible outcomes (r1, r2): (0, 0)
t1: r1 = x; t2: r2 = y; (1, 0)

y = 2; x = 1; (0, 2)

But by reordering in t1 and t2 we could obtain r1 = 1, r2 = 2 !

This result does not match sequential consistency
(that we are intuitively used to)

all memory accesses correspond to total order (linear), and
order of accesses in any thread is program order

Why are concurrent programs hard to verify?

Understanding concurrency problems is often hard

Difficult to exercise a certain execution sequence
needs control over/changes to scheduler/external conditions

Error traces might be very rare (in certain complex scenarios)

Error conditions may be hard to reproduce (“Heisenbugs”)

Exhaustive exploration of all execution traces is infeasible
quad (exponential in number of threads / their size)

Error patterns in concurrent programs

[Farchi, Nir, Ur: Concurrent bug patterns and how to test them, 2003]

Ignoring non-atomicity
x = 0 || x = 0x101 ⇒ x == 1 possible!!

if the bytes are written separately (hi from 0, low from 0x101)

Two-step access
even if accesses protected, object may change in between

lock(); idx = table.find(key); unlock();
if (...) { lock(); table[idx] = newval; unlock(); }

Missing / wrong lock (e.g. programmer unfamiliar with code)
t1: synchronized(o1) {n++;} t2: n++; // not sync

or
t1: synchronized(o1) {n++;} t2: synchronized(o2) {n++;}

Error patterns in concurrent programs

[Farchi, Nir, Ur: Concurrent bug patterns and how to test them, 2003]

Ignoring non-atomicity
x = 0 || x = 0x101 ⇒ x == 1 possible!!

if the bytes are written separately (hi from 0, low from 0x101)

Two-step access
even if accesses protected, object may change in between

lock(); idx = table.find(key); unlock();
if (...) { lock(); table[idx] = newval; unlock(); }

Missing / wrong lock (e.g. programmer unfamiliar with code)
t1: synchronized(o1) {n++;} t2: n++; // not sync

or
t1: synchronized(o1) {n++;} t2: synchronized(o2) {n++;}

Error patterns in concurrent programs

[Farchi, Nir, Ur: Concurrent bug patterns and how to test them, 2003]

Ignoring non-atomicity
x = 0 || x = 0x101 ⇒ x == 1 possible!!

if the bytes are written separately (hi from 0, low from 0x101)

Two-step access
even if accesses protected, object may change in between

lock(); idx = table.find(key); unlock();
if (...) { lock(); table[idx] = newval; unlock(); }

Missing / wrong lock (e.g. programmer unfamiliar with code)
t1: synchronized(o1) {n++;} t2: n++; // not sync

or
t1: synchronized(o1) {n++;} t2: synchronized(o2) {n++;}

Error patterns in concurrent programs (cont.)

Double-checked locking: “optimizing” on-demand initialization
class Foo {

private Helper helper = null;
public Helper getHelper() { // to avoid some synchronization

if (helper == null) // already allocated? return
synchronized(this) {

if (helper == null) // second check is protected
helper = new Helper();

}
return helper; // other thread may see incomplete object

}
}

Problem: compiler is free to reorder for optimization

Error patterns in concurrent programs (cont.)

Situations assumed impossible (but which may happen):

sleep() wrongly used to guarantee a delay

Lost Notify: when executed before wait:
t1: synchronized(o) { o.wait(); }

|| t2: synchronized(o) { o.notifyAll(); }

Unchecked Wait: on resume, must check awaited condition
(resume might have happened due to other causes)

Deadlock scenarios

code written assuming the critical section won’t block
false, if (bad) code provided by someone else

“orphan” threads
if creator thread terminates with error⇒ may lead to deadlock

Error patterns in concurrent programs (cont.)

Situations assumed impossible (but which may happen):

sleep() wrongly used to guarantee a delay

Lost Notify: when executed before wait:
t1: synchronized(o) { o.wait(); }

|| t2: synchronized(o) { o.notifyAll(); }

Unchecked Wait: on resume, must check awaited condition
(resume might have happened due to other causes)

Deadlock scenarios

code written assuming the critical section won’t block
false, if (bad) code provided by someone else

“orphan” threads
if creator thread terminates with error⇒ may lead to deadlock

Java memory model

A concurrent language must have a memory model that is intuitive,
and which does not limit performance, by restricting optimizations

Solution [JSR 133; Manson, Pugh, Adve, PLDI’05]:
define a class of well-synchronized programs (data race free)

for which sequential consistency is ensured
minimal guarantees for other programs (not well-synchronized)

Principle:
define a happens-before order [Lamport] between program actions:
transitive closure of

a) ordering of synchronization actions (b/w any unlock and lock
on same monitor, and b/w write and read on a volatile variable)

b) program order (between execution threads)

Java memory model

A concurrent language must have a memory model that is intuitive,
and which does not limit performance, by restricting optimizations

Solution [JSR 133; Manson, Pugh, Adve, PLDI’05]:
define a class of well-synchronized programs (data race free)

for which sequential consistency is ensured
minimal guarantees for other programs (not well-synchronized)

Principle:
define a happens-before order [Lamport] between program actions:
transitive closure of

a) ordering of synchronization actions (b/w any unlock and lock
on same monitor, and b/w write and read on a volatile variable)

b) program order (between execution threads)

Java memory model

A concurrent language must have a memory model that is intuitive,
and which does not limit performance, by restricting optimizations

Solution [JSR 133; Manson, Pugh, Adve, PLDI’05]:
define a class of well-synchronized programs (data race free)

for which sequential consistency is ensured
minimal guarantees for other programs (not well-synchronized)

Principle:
define a happens-before order [Lamport] between program actions:
transitive closure of

a) ordering of synchronization actions (b/w any unlock and lock
on same monitor, and b/w write and read on a volatile variable)

b) program order (between execution threads)

Volatile variables and synchronization

Reading a volatile variable:
last value written in synchronization order

Reading a non-volatile variable:
any value which is not written later according to happens-before
and is not obsoleted by another write

Warning: volatile does NOT mean atomic !

Race condition =
conflicting accesses (r-w, w-w) not ordered by happens-before.

Well-synchronized program = does not have race conditions

Volatile variables and synchronization

Reading a volatile variable:
last value written in synchronization order

Reading a non-volatile variable:
any value which is not written later according to happens-before
and is not obsoleted by another write

Warning: volatile does NOT mean atomic !

Race condition =
conflicting accesses (r-w, w-w) not ordered by happens-before.

Well-synchronized program = does not have race conditions

Unit testing solutions

Implicitly, JUnit observes thread that launched the test
⇒ does not detect exceptions in threads launched later
⇒ need frameworks with features adapted to concurrency

Various jUnit additions, e.g. ConcJUnit [Rice University]
creates/observers a group of execution threads
warns if other threads still running after main thread completes

(should have been handled with a join ...)
may insert arbitrary delays ⇒ generates other interleavings

RunnerScheduler (experimental API addition)

Unit testing solutions

Implicitly, JUnit observes thread that launched the test
⇒ does not detect exceptions in threads launched later
⇒ need frameworks with features adapted to concurrency

Various jUnit additions, e.g. ConcJUnit [Rice University]
creates/observers a group of execution threads
warns if other threads still running after main thread completes

(should have been handled with a join ...)
may insert arbitrary delays ⇒ generates other interleavings

RunnerScheduler (experimental API addition)

Solutions for system-level testing

Idea: create variation in thread scheduling
ConTest [IBM Haifa]

instruments program (sleep(), yield(), etc.)
or simulates delays, message loss, etc.
⇒ random or guided variation in scheduling

measures coverage with respect to all possible
schedules/interleavings

CHESS [Microsoft Research]
captures calls to synchronization functions
systematically generates executions with new schedules

in increasing order of preemption count
can reproduce generated executions

Detecting race conditions

Many proposed solutions. Widely used algorithm: Eraser [1997]

combines static and dynamic analysis
by analyzing one execution finds potential errors in others
keeps track of locks acquired by each thread
tries to derive which lock protects which shared object

init: C(v) = all locks; // for each variable v
access: C(v) = C(v) ∩ locks held(t); // on access by t

if (C(v) = ∅) warning(); // unprotected access!

If extended, may distinguish read and write locks, tracking the
state of each variable (virgin, exclusive, shared, shared-modified)

Conservative algorithm, may give false alarms for correct programs
(which do not associate a variable with a unique lock throughout)

High-level data races

[Artho, Havelund, Biere 2003]
Errors: when granularity of protected variables not same over time
void swap() {

int lx, ly;
synchronized(this) {

lx = this.x;
ly = this.y;

}
synchronized(this) {

this.x = ly;
this.y = lx;

}
}

void reset() {
synchronized(this) {

this.x = 0;
}
synchronized(this) {

this.y = 0;
}

}

Member access synchronized, but swap and reset may interfere!

⇒ Need analysis not just for variables (what locks protect them?)
but also starting from locks (what variable sets covered by each?)

Java PathFinder [NASA]: Model checking for concurrency

Completely explores program executions
simulates nondeterminism through a custom virtual machine
which allows choosing scheduling variants at each step
and returning to unexplored ones (similar to backtracking)

Works at bytecode level; allows to check
deadlocks
exceptional conditions
assertions in code

Limited to smaller programs (10 kloc): “state space explosion”
size of stored states (number of program variables)
number of possible traces (exponential in number of threads)

What are developers doing in practice?

Lu, Park, Seo, Zhou: Learning from Mistakes – A Comprehensive
Study on Real World Concurrency Bug Characteristics, ASPLOS’08

Research Questions:

what kinds of real bugs can be detected?

are assumptions valid ? e.g. focus on single-variable access

how helpful are tools in diagnosing and fixing ?

Findings on Bugs [Lu et al.’08]

105 randomly selected real world concurrency bugs
74 non-deadlock bugs + 31 deadlock bugs

4 large open-source programs:
Apache, Mozilla, MySQL, OpenOffice

97% two patterns: atomicity or order violation
latter not well addressed by tools

97% two threads, circular wait
96% reproducible w/ partial order between 2 threads
92% order between ≤ 4 memory accesses

⇒ suggests handling common cases is effective

Findings on Bugs [Lu et al.’08]

66% involved only one variable
22% caused by one thread acquiring resource held by itself

73% of non-deadlock bugs fixed not by adding locks
61% fix: prevent thread to aquire a lock; may cause other bugs

Transactional memory could avoid 39% of bugs
+ 42% more by addressing some concerns (I/O, atomic GC)

Study in Software Maintenance Community

R. Xin et al., An Automation-assisted Empirical Study
on Lock Usage for Concurrent Programs, ICSM 2013

4 programs: Aget, Apache httpd, MySQL, Pbzip2, up to 786Kloc

Issues to study:
(language) characteristics of lock usage (function/lock counts)
lock usage patterns
lock usage evolution

Findings [Xin et al., ICSM’13]

I 80% of the lock related functions acquire only one lock
I simple lock patterns account for 55% of all lock usage
I only 12 out of 527 detected patterns are conditional

(more error-prone)
I only 0.65% of functions are lock related

What do practitioners use?

Wojkicki & Strooper, A State-of-Practice Questionnaire on
Verification and Validation for Concurrent Programs, PADTAD’06

35 survey respondents, Java development

Relevant defects: deadlock, interference (> 80%), starvation (50%)

Techniques: code inspection, jUnit test (> 80%)
static analyis (50%, mostly FindBugs), code coverage,
model checking (20%)

How good are the tools used in practice?

Kester, Mwebesa, Bradbury (SCAM 2010):
How Good is Static Analysis at Finding Concurrency Bugs?

used 12 benchmarks from Java PathFinder and IBM ConTest

evaluated 3 tools: FindBugs, JLint, Chord

recall: 30-33 % of actual known bugs
precision: 100% (Chord), 78% (JLint), 31% (FindBugs)

Threat to validity: small-scale evaluation (13 bugs)

Developer Study at Google

Sadowski & Yi. How Developers Use Data Race Detection Tools.
SPLASH/PLATEAU’14

Two data race analysis mechanisms: ThreadSafety and TSan

ThreadSafety: static, annotation-based, implemented in Clang
led to 18 bug-fixing commits (1 month) in small section of code

TSan (ThreadSanitizer) : dynamic identification of data races
TSan v1 – Valgrind, 20-300x slowdown
TSan v2 – LLVM, happens-before, 5-15x slowdown,

TSan in 30 min. found Chrome bug hunted for 6 months

Usage in Google development teams

Team A: ThreadSafety for docs, nightly runs of TSan
find 1 race per 10 weeks

Team B: added annotations to all core libraries
ensures annotation for all mutexes (automatically searched)

Team C: stable synch. code, no payoff for ThreadSafety,
not heard of TSan

Team D: ThreadSafety for tricky code, not heard of TSan

Google study findings

Reproducibility & low false positives are important
Team culture matters
Tradeoff: races vs. deadlocks (crash is easy, inconsistency is hard)
Manual inspection is implicit comparison point
Good docs important for building mental models

Limitations: slow speed and lack of coverage (TSan),
difficulty of annotation (ThreadSafety)

