Static Analysis

Dataflow Analysis

Static analysis: definition

Analysis of code (usually source) without executing the program, in order to determine some program properties mainly correctness, but also performance, etc.

Complementary to *dynamic* analyses (that run the code)

Static analysis: definition

Analysis of code (usually source) without executing the program, in order to determine some program properties mainly correctness, but also performance, etc.

Complementary to *dynamic* analyses (that run the code)

Sample properties
uninitialized variables
null pointers
unused assignments
code vulnerabilities (overflows, index out of range, etc.)

Static analysis: definition

Usually, static analyses are linked to program *semantics* sometimes, limited to (syntactic) *structure* of program

History:

strongly linked to compilers (mainly optimization) more recently: in language design; for error detection

Dataflow analysis

Techniques originating in the compiler domain used for *code generation* (e.g., register allocation) and code *optimization* (constant propagation/folding, common subexpression elimination, detecting uninitialized variables, etc.)

The same techniques can be applied to code analysis – very general

Dataflow analysis

```
Techniques originating in the compiler domain used for code generation (e.g., register allocation) and code optimization (constant propagation/folding, common subexpression elimination, detecting uninitialized variables, etc.)
```

The same techniques can be applied to code analysis – very general

```
Basic ideas
```

```
construct program control flow graph
analyze how properties of interest change throughout the program
(while traversing CFG nodes / edges)
```

Program control flow graph (CFG)

```
A program representation in which 
nodes are statements 
edges indicate sequencing/control flow (including jumps)
```

```
⇒ nodes may have:
one successor (e.g., assignments)
several successors (branch statements)
several predecessors (e.g., join after an if)
```

Sometimes we also use the dual representation: nodes are program control points (program counter values) edges are statements with their effects

Sample program and CFG

```
int a = 0, b, c = 0;

do {

b = a + 1;

c = c + b;

a = 2 * b;

} while (a < 100);

return c;

a = 0
b = a + 1
c = c + b
a = 2 * b
a = 2 * b
return c;
```

Notation

```
G = (N, E): control flow graph (N : nodes; E : edges)
```

s: program statement (node in CFG)
 entry, exit: program entry and exit points
 in(s): set of edges leading to s (having s as destination)
 out(s): set of edges outgoing from s (having s as source)

Notation

```
G = (N, E): control flow graph (N : nodes; E : edges)
s: program statement (node in CFG)
  entry, exit: program entry and exit points
  in(s): set of edges leading to s (having s as destination)
  out(s): set of edges outgoing from s (having s as source)
  src(e): source statement of edge e
  dest(e): destination statement of edge e
  pred(s): set of predecessors of statement s
  succ(s): set of successors of statement s
```

Notation

```
G = (N, E): control flow graph (N : nodes; E : edges)
s: program statement (node in CFG)
  entry, exit: program entry and exit points
  in(s): set of edges leading to s (having s as destination)
  out(s): set of edges outgoing from s (having s as source)
  src(e): source statement of edge e
  dest(e): destination statement of edge e
  pred(s): set of predecessors of statement s
  succ(s): set of successors of statement s
  read(s): set of variables read in statement s
  write(s): set of variables written in statement s
```

From CFG to dataflow equations

```
We will write dataflow equations:

describe how analyzed values (dataflow facts)

change from one statement to another
```

```
We need the value (property) of interest:
at the entrypoint of s (denote: V_{in})
and the exit point of s (denote: V_{out})
```

Example: Reaching definitions

```
What are all assignments (definitions)

that may reach the current point

(without being overwritten by other assignments on the path)
```

Elements of interest: pairs (variable, source line for def).

```
For every statement s (identified by its label l) we want the value before RD_{in}(s) and after RD_{out}(s)
```

Exemplu: Reaching definitions

The entry point is not reached by any definition

$$RD_{out}(entry) = \{(v,?) \mid v \in V\}$$

Exemplu: Reaching definitions

The entry point is not reached by any definition

$$RD_{out}(entry) = \{(v,?) \mid v \in V\}$$

An assignment $l: v \leftarrow e$ removes all previous definitions for v (unchanged for other vars) and records current statement as definition

$$RD_{out}(I:v\leftarrow e) = (RD_{in}(s)\setminus\{(v,s')\})\cup\{(v,l)\}$$

Exemplu: Reaching definitions

The entry point is not reached by any definition

$$RD_{out}(entry) = \{(v,?) \mid v \in V\}$$

An assignment $l: v \leftarrow e$ removes all previous definitions for v (unchanged for other vars) and records current statement as definition

$$RD_{out}(I:v \leftarrow e) = (RD_{in}(s) \setminus \{(v,s')\}) \cup \{(v,l)\}$$

Def-values at *entry* of a statement are *union* of def-values at *exit* of predecessor statements:

$$RD_{in}(s) = \bigcup_{s' \in pred(s)} RD_{out}(s')$$

Example: Live variables analysis

At every program point, which variables will have their values *used* on *at least one* path from that point?

(useful in compilers for register allocation)

Transfer function:
$$LV_{in}(s) = (LV_{out}(s) \setminus write(s)) \cup read(s)$$

A variable is *live* before *s*if it is read by *s*or it is *live* after *s* and not written by *s*⇒ direction of analysis is *backwards*

Example: Live variables analysis

Meet (combine) operation:

$$LV_{out}(s) = \left\{ egin{array}{ll} \emptyset & ext{if } succ(s) = \emptyset \ igcup_{s' \in succ(s)} LV_{in}(s') & ext{otherwise} \end{array}
ight.$$

⇒ combination is union (may, at least one path)

Computation: worklist algorithm that makes changes from initial values until there are no more changes \Rightarrow fixpoint is reached

Example: Available expressions

At every program point, what are the expressions whose value is *available* (previously computed) *without* having changed on *any path* to that point? if value is stored in a temp / register, need not recompute

Example: Available expressions

At every program point, what are the expressions whose value is *available* (previously computed) *without* having changed on *any path* to that point? if value is stored in a temp / register, need not recompute

Transfer function:

$$AE_{out}(s) = (AE_{in}(s) \setminus \{e \mid V(e) \cap write(s) \neq \emptyset\})$$

$$\cup \{e \in Subexp(s) \mid V(e) \cap write(s) = \emptyset\}$$

(expressions at entry of s that have not been changed by s, and any expressions computed in s without change to their variables)

Example: Available expressions

Meet (combine) operation:

$$AE_{in}(s) = \left\{ egin{array}{ll} \emptyset & ext{if } pred(s) = \emptyset \\ igcap_{s' \in pred(s)} AE_{out}(s') & ext{otherwise} \end{array}
ight.$$

- ⇒ combination done by intersection (must, on all paths);
- ⇒ analysis direction is forward

Example: Very busy expressions

What expressions *must* be evaluated on *any path* from the current point before any of their variables is modified ?

- \Rightarrow evaluation can be hoisted up to the current point, before any branches
- a backwards and must (universal) analysis

$$VBE_{in}(s) = (VBE_{out}(s) \setminus \{e \mid V(e) \cap write(s) \neq \emptyset\}) \cup Subexp(s)$$

$$VBE_{out}(s) = \left\{ egin{array}{ll} \emptyset & ext{if } succ(s) = \emptyset \\ igcap_{s' \in succ(s)} VBE_{in}(s') & ext{otherwise} \end{array}
ight.$$

Analyzed properties (dataflow facts)

Concretely, for each problem: we analyze some property, e.g.

- value of a variable at a program point
- or *interval* of values for a variable
- or sets of variables (live), expressions (available, very busy),
- possible definitions for a value (reaching definitions), etc.

Abstract view: a set D of values for a property (dataflow facts)

Restriction: D is a *finite* set

Lattices

A *lattice* is a *partially ordered* set, in which every pair of elements has a least upper bound and a greatest lower bound.

(an element "larger", resp. "smaller" than either of them)

Ex: powerset of a set (intersection, union)

Ex: set of divisors of a number (gcd, least common multiple)

 $Image: \ http://en.wikipedia.org/wiki/File: Hasse_diagram_of_powerset_of_3.svg$

 $\verb|http://en.wikipedia.org/wiki/File:Lattice_of_the_divisibility_of_60.svg|$

Transfer functions

Concrete domain: program statements change program state.

e.g. value of variable after a statement s is a function of its value before s

Abstract domain:

Each statement s has an associated transfer function

$$F(s): D \rightarrow D$$

that determines *how* the value of a property at the start of a statement is *changed* by that statement:

$$Val_{out}(s) = F(s)(Val_{in}(s))$$

(for analysis going *forward*) or conversely (for *backwards* analyses)

Transfer functions

Restriction: analysis is easier for *monotone* transfer functions:

$$x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$

(intuition: if the argument is more precise, so is the result)

Special case: bitvector frameworks: the lattice is a powerset, $\mathcal{P}(D)$, transfer functions are monotone, of the form:

$$F(s)(v) = (v \setminus kill(s)) \sqcup gen(s)$$

(v = dataflow fact,<math>gen/kill(s) = information generated/deleted by s)

Dataflow equations

Example for forward analyses:

$$Val_{out}(s) = F(s)(Val_{in}(s))$$
 $Val_{in}(s) = \prod_{s' \in pred(s)} Val_{out}(s')$

where \prod is meet (combining effects) over several paths (could be \cap or $\cup)$

Initially, we know value of Valout (entry).

For backwards analyses, we initially know $Val_{in}(exit)$ and the roles of *in* and *out* are switched.

Solution: worklist algorithm

To compute a solution to this equation system: an iterative algorithm that *propagates changes* in the direction of the analysis.

```
foreach s \in N do Val_{in}(s) = \top // no info
Val_{in}(entry) = init // depending on analysis
W = \{entry\}
while W \neq \emptyset
    choose s \in W
    old_out = Val_{out}(s)
    W = W \setminus \{s\}
    Val_{in}(s) = \prod_{s' \in pred(s)} Val_{out}(s')
    Val_{out}(s) = F(s)(Val_{in}(s))
    if Val_{out}(s) \neq old_out then
        forall s' \in succ(s) do W = W \cup \{s'\}
```

Termination: fixpoint condition

Termination of analysis is guaranteed if the transfer function is monotone:

$$x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$

which implies that the computed values change monotonously.

Def: A *fixpoint* of a function f is a value x so that f(x) = x

Kanster-Tarski theorem guarantees that a monotone function over a complete lattice has a least and a greatest fixpoint.

The worklist algorithm computes the least fixpoint solution for the equation system given by the transfer functions.

Meet over all paths

We wish to compute the combined effect of the program statements: For a path (statement sequence) $p=s_1s_2\dots s_n$ we define

$$F(p) = F(s_n) \circ \ldots \circ F(s_2) \circ F(s_1)$$

and we wish to compute:

$$\prod_{p \in Path(Prog)} F_p(entry)$$

The iterative algorithm *combines* effects at *each join point* before continuing computation...

Meet over all paths

Since functions are monotone, we have:

$$f(x \sqcup y) \supseteq f(x) \sqcup f(y)$$

so analysis loses precision

Distributive transfer functions satisfy:
$$f(x) \cup f(y) = f(x \cup y)$$

In this case, the iterative fixpoint algorithm is equivalent with *meet over all paths*.

 \Rightarrow combining info on execution paths does not lose precision

All 4 classical examples (live variables, etc.) are distributive.

- forward or backwards
- must or may

- forward or backwards
- must or may
- flow-sensitive or insensitive (flow = control flow)
 - e.g., does the statement order in the program matter ?
 - no: for variable used/changed, called functions, etc.
 - yes: for properties linked to actual values computed by program

- forward or backwards
- must or may
- flow-sensitive or insensitive (flow = control flow)
 - e.g., does the statement order in the program matter ?
 - no: for variable used/changed, called functions, etc.
 - yes: for properties linked to actual values computed by program
- context-sensitive or context-insensitive?
 is the analysis of a function/procedure specialized
 depending on the call site or not? (generic function summary)

- forward or backwards
- must or may
- flow-sensitive or insensitive (flow = control flow)
 - e.g., does the statement order in the program matter?
 - no: for variable used/changed, called functions, etc.
 - yes: for properties linked to actual values computed by program
- context-sensitive or context-insensitive?
 is the analysis of a function/procedure specialized
 depending on the call site or not? (generic function summary)
- path-sensitive or path-insensitive does it account for correlation between execution paths ?