Program verification

Example revisited

// assume(n>2);
void partition(int all, int n) {
int pivot = al[0];
int lo = 1, hi = n-1;
while (1o <= hi) {
while (lo < n && al[lo] <= pivot)
lo++;
while (alhi] > pivot)
hi--;
if (lo < hi)
swap(a,lo,hi);
}
}

How can we reason about this program (fragment) ?

The beginnings of program verification

Goal: formalizing programming language semantics

Robert W. Floyd. Assigning Meanings to Programs (1967)

"an adequate basis for formal definitions of the meanings of programs
[...] in such a way that a rigorous standard is established for proofs’

"If the initial values of the program variables satisfy the relation Ry,
the final values on completion will satisfy the relation R»."

Floyd: Assigning Meanings to Programs

Floyd's method: annotating a program (flowchart) with assertions

verification condition: a formula V(P; Q) such that
if P is true before executing c,
then @ is true on termination

strongest verifiable consequent (for a program + an initial condition)
= strongest property true after after program execution

Formulas/assertion: expressed in first order logic (predicate logic)

Floyd: Assigning Meanings to Programs

Floyd’s work:
develops general rules for combining verification conditions
and specific rules to combine different instruction types
introduces invariants for reasoning about cycles

handles termination using a positive decreasing measure

The work of Hoare

C.A.R.Hoare. An Axiomatic Basis for Computer Programming (1969)

— works with program text, not flowcharts
— like Floyd, uses preconditions and postconditions for statements,

— the Hoare triple notation better highlights the relation
between statement and the two assertions

The work of Hoare

— Notation partial correctness {P} S {Q}

If S is executed in a state that satisfies P
and S terminates
= the resulting state satisfies Q

The work of Hoare

— Notation partial correctness {P} S {Q}

If S is executed in a state that satisfies P
and S terminates
= the resulting state satisfies Q

— Similar statements for total correctness [P] S [Q]

If S is executed in a state that satisfies P
= then § terminates
and the resulting state satisfies @

The work of Hoare

— Notation partial correctness {P} S {Q}

If S is executed in a state that satisfies P
and S terminates
= the resulting state satisfies Q

— Similar statements for total correctness [P] S [Q]

If S is executed in a state that satisfies P
= then § terminates
and the resulting state satisfies @

Rigorous example: C.A.R.Hoare. Proof of a Program: FIND (1971)

Hoare's rules (axioms)

Are defined for each individual statement
by combining them, we can reason about whole programs

Hoare's rules (axioms)

Are defined for each individual statement
by combining them, we can reason about whole programs

Assignment: where Q[x/E] substitutes E for x in Q

{QIx/E]} x := E{Q}
eg: {x=y—-2} x:=x+2 {x=y}
(in the result, x = y, we substitute x with the assigned expression, x + 2

and get x+2=y,sox =y —2)

Note: the “backwards” writing (P as a function of Q) simplifies the rule

Hoare's rules (axioms)

{P} i {Q} {Q}S{R}
{P} 51:5 {R}

Sequencing:

{PAE} S {Q} {PA-E} % {Q}

Decision:

{P} if E then S; else S, {Q}

Hoare's rules (cont.)

Loop (with initial test): is key in reasoning about programs

— we must find an invariant | = a property preserved by every execution
of the cycle (true each time between iterations)

Hoare's rules (cont.)

Loop (with initial test): is key in reasoning about programs

— we must find an invariant | = a property preserved by every execution
of the cycle (true each time between iterations)

— if cycle is entered (E), invariant is maintained after one iteration S

— if cycle is not entered (—E), invariant implies postcondition @

Hoare's rules (cont.)

Loop (with initial test): is key in reasoning about programs

— we must find an invariant | = a property preserved by every execution
of the cycle (true each time between iterations)

— if cycle is entered (E), invariant is maintained after one iteration S

— if cycle is not entered (—E), invariant implies postcondition @

Hoare rule for while

{INE} S{l} IN-E=Q
{I} while E do S {Q}

Example of applying Hoare rules

Find n knowing it's initially between 1o and hi:

while (lo < hi) { // binary search; I: lo <= n && n <= hi
m = (lo + hi) / 2;

if (n > m) // both cases maintain lo<=n && n<=hi
lo = m+1; // n>m=>n > mntl => n >= lo
else hi = m; // '(n>m) =>n<=m=>n <= hi
} // 1 stays true

// lo<=n && n<=hi && !(lo<hi) => lo==n && n==hi

assert(n == lo && n == hi);

Hoare rules with pointers (aliasing)

Consider {P} *x =2 {v + xx = 4}
What is the precondition P ?

Hoare rules with pointers (aliasing)

Consider {P} *x =2 {v 4+ xx =4}
What is the precondition P ?

Right answer:
v=2Vx=2~&v

But applying assignment rule (v + sx =4)[*x/2]
loses the second case...

Hoare rules with pointers (aliasing)

We must model memory. m = memory, a = address, d = data

Consider the functions rd(m, a) return d and wr(m, a, d) return m’

Hoare rules with pointers (aliasing)

We must model memory. m = memory, a = address, d = data
Consider the functions rd(m, a) return d and wr(m, a, d) return m’

d if ap = a1

Rule: rd(wr(m, a1, d),a) = { rd(m,ay) if ax # a1

Hoare rules with pointers (aliasing)

We must model memory. m = memory, a = address, d = data

Consider the functions rd(m, a) return d and wr(m, a, d) return m’

d ifap=a
Rule: rd(wr(m, a1,d), a2) = { rd(m,ap) if az # 31

We must derive a property of memory m from the relation:
rd(wr(m, x,2),&v) + rd(wr(m, x,2),x) =4

Hoare rules with pointers (aliasing)

We must model memory. m = memory, a = address, d = data
Consider the functions rd(m, a) return d and wr(m, a, d) return m’

d ifap=a
Rule: rd(wr(m, a1,d), a2) = { rd(m,ap) if az # 31

We must derive a property of memory m from the relation:
rd(wr(m, x,2),&v) + rd(wr(m, x,2),x) =4

rd(wr(m, x,2),&v)+2 =14
rd(wr(m,x,2),&v) =2

Hoare rules with pointers (aliasing)

We must model memory. m = memory, a = address, d = data
Consider the functions rd(m, a) return d and wr(m, a, d) return m’

d if ap = a1

Rule: rd(wr(m, a1, d),a) = { rd(m,ay) if ax # a1

We must derive a property of memory m from the relation:
rd(wr(m, x,2),&v) + rd(wr(m, x,2),x) =4
rd(wr(m, x,2),&v)+2 =14
rd(wr(m,x,2),&v) =2

Xx=&VA2=2Vx#&vArd(m&v)=2
x=&vVv=2

Dijkstra's weakest precondition operator

E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs (1975)

— for a statement S and given postcondition @ there can be several
preconditions P such that {P} S {Q} or [P] S [Q].

— Dijkstra establishes a necessary and sufficient precondition wp(S, Q)
for successful termination of S with postcondition Q.

Dijkstra's weakest precondition operator

E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs (1975)

— for a statement S and given postcondition @ there can be several
preconditions P such that {P} S {Q} or [P] S [Q].

— Dijkstra establishes a necessary and sufficient precondition wp(S, Q)
for successful termination of S with postcondition Q.

— necessary (weakest): if [P] S [Q] then P = wp(S, Q)

— wp is a predicate transformer (transforms post- into precondition)

— allows defining a calculus with such transformations

Dijkstra's preconditions (cont.)

Assignment: wp(x = E, Q) = Q[x/E] (see Hoare's rule)
Sequencing: wp(S1; S2, Q) = wp(S1, wp(S2, Q))

Decision:
wp(if E then S else S, Q)
=(E = wp(51, Q) A (—E = wp(S2, Q))

Dijkstra's preconditions (cont.)

For loops, we need a recurrent computation
Define wpy, assuming loop finishes in at most k iteration:

wpo(while E do S, Q) = —-E = Q (loop not entered)

wpk+1(while Edo S, Q))
= (E=wp(S, wpk(while Edo S, Q))) N (mE=Q)

Dijkstra's preconditions (cont.)

For loops, we need a recurrent computation
Define wpy, assuming loop finishes in at most k iteration:

wpo(while E do S, Q) = —-E = Q (loop not entered)

wpk+1(while Edo S, Q))
= (E=wp(S, wpk(while Edo S, Q))) N (mE=Q)

(< k + 1 iterations < one iteration followed by < k, or no iteration;
equivalent with decomposing the first while into an if)

=- can be written as a fixpoint formula

Recap: verification by theorem proving

1. Write Hoare triples / Dijkstra's preconditions

2. Check the chain of implications
(with a decision procedure / theorem prover)

Examples:
with Hoare's sequencing rule
check Pre = wp(Prog, Post)
check I A E = wp(LoopBody, I) for loops

