
Program verification



Example revisited

// assume(n>2);

void partition(int a[], int n) {

int pivot = a[0];

int lo = 1, hi = n-1;

while (lo <= hi) {

while (lo < n && a[lo] <= pivot)

lo++;

while (a[hi] > pivot)

hi--;

if (lo < hi)

swap(a,lo,hi);

}

}

How can we reason about this program (fragment) ?



The beginnings of program verification

Goal: formalizing programming language semantics

Robert W. Floyd. Assigning Meanings to Programs (1967)

”an adequate basis for formal definitions of the meanings of programs
[...] in such a way that a rigorous standard is established for proofs”

”If the initial values of the program variables satisfy the relation R1,
the final values on completion will satisfy the relation R2.”



Floyd: Assigning Meanings to Programs

Floyd’s method: annotating a program (flowchart) with assertions

verification condition: a formula Vc(P; Q) such that
if P is true before executing c ,

then Q is true on termination

strongest verifiable consequent (for a program + an initial condition)
= strongest property true after after program execution

Formulas/assertion: expressed in first order logic (predicate logic)



Floyd: Assigning Meanings to Programs

Floyd’s work:

develops general rules for combining verification conditions
and specific rules to combine different instruction types

introduces invariants for reasoning about cycles

handles termination using a positive decreasing measure



The work of Hoare

C.A.R. Hoare. An Axiomatic Basis for Computer Programming (1969)

– works with program text, not flowcharts

– like Floyd, uses preconditions and postconditions for statements,

– the Hoare triple notation better highlights the relation
between statement and the two assertions



The work of Hoare

– Notation partial correctness {P} S {Q}

If S is executed in a state that satisfies P
and S terminates
⇒ the resulting state satisfies Q

– Similar statements for total correctness [P] S [Q]

If S is executed in a state that satisfies P
⇒ then S terminates

and the resulting state satisfies Q

Rigorous example: C.A.R. Hoare. Proof of a Program: FIND (1971)
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Hoare’s rules (axioms)

Are defined for each individual statement
by combining them, we can reason about whole programs

Assignment:
{Q[x/E ]} x := E {Q}

where Q[x/E ] substitutes E for x in Q

e.g.: {x = y − 2} x := x + 2 {x = y}

(in the result, x = y , we substitute x with the assigned expression, x + 2
and get x + 2 = y , so x = y − 2)

Note: the “backwards” writing (P as a function of Q) simplifies the rule
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Hoare’s rules (axioms)

Sequencing:
{P} S1 {Q} {Q} S2 {R}

{P} S1; S2 {R}

Decision:
{P ∧ E} S1 {Q} {P ∧ ¬E} S2 {Q}

{P} if E then S1 else S2 {Q}



Hoare’s rules (cont.)

Loop (with initial test): is key in reasoning about programs

– we must find an invariant I = a property preserved by every execution
of the cycle (true each time between iterations)

– if cycle is entered (E ), invariant is maintained after one iteration S

– if cycle is not entered (¬E ), invariant implies postcondition Q

Hoare rule for while

{I ∧ E} S {I} I ∧ ¬E ⇒ Q

{I} while E do S {Q}
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Example of applying Hoare rules

Find n knowing it’s initially between lo and hi:

while (lo < hi) { // binary search; I: lo <= n && n <= hi

m = (lo + hi) / 2;

if (n > m) // both cases maintain lo<=n && n<=hi

lo = m+1; // n > m => n >= m+1 => n >= lo

else hi = m; // !(n > m) => n <= m => n <= hi

} // I stays true

// lo<=n && n<=hi && !(lo<hi) => lo==n && n==hi

assert(n == lo && n == hi);



Hoare rules with pointers (aliasing)

Consider {P} ∗ x = 2 {v + ∗x = 4}
What is the precondition P ?

Right answer:
v = 2 ∨ x = &v

But applying assignment rule ( v + ∗x = 4 )[ ∗x/2 ]

loses the second case...
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Hoare rules with pointers (aliasing)

We must model memory. m = memory, a = address, d = data

Consider the functions rd(m, a) return d and wr(m, a, d) return m′

Rule: rd(wr(m, a1, d), a2) =

{
d if a2 = a1
rd(m, a2) if a2 6= a1

We must derive a property of memory m from the relation:

rd(wr(m, x , 2),&v) + rd(wr(m, x , 2), x) = 4

rd(wr(m, x , 2),&v) + 2 = 4
rd(wr(m, x , 2),&v) = 2

x = &v ∧ 2 = 2 ∨ x 6= &v ∧ rd(m,&v) = 2
x = &v ∨ v = 2
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Dijkstra’s weakest precondition operator

E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs (1975)

– for a statement S and given postcondition Q there can be several
preconditions P such that {P} S {Q} or [P] S [Q].

– Dijkstra establishes a necessary and sufficient precondition wp(S ,Q)
for successful termination of S with postcondition Q.

– necessary (weakest): if [P] S [Q] then P ⇒ wp(S ,Q)

– wp is a predicate transformer (transforms post- into precondition)

– allows defining a calculus with such transformations
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Dijkstra’s preconditions (cont.)

Assignment: wp(x := E ,Q) = Q[x/E ] (see Hoare’s rule)

Sequencing: wp(S1; S2,Q) = wp(S1,wp(S2,Q))

Decision:

wp(if E then S1 else S2,Q)

= (E ⇒ wp(S1,Q)) ∧ (¬E ⇒ wp(S2,Q))



Dijkstra’s preconditions (cont.)

For loops, we need a recurrent computation

Define wpk , assuming loop finishes in at most k iteration:

wp0(while E do S ,Q) = ¬E ⇒ Q (loop not entered)

wpk+1(while E do S ,Q))

= (E⇒wp(S ,wpk(while E do S ,Q))) ∧ (¬E⇒Q)

(≤ k + 1 iterations ⇔ one iteration followed by ≤ k , or no iteration;
equivalent with decomposing the first while into an if)

⇒ can be written as a fixpoint formula
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Recap: verification by theorem proving

1. Write Hoare triples / Dijkstra’s preconditions

2. Check the chain of implications
(with a decision procedure / theorem prover)

Examples:
with Hoare’s sequencing rule
check Pre ⇒ wp(Prog ,Post)
check I ∧ E ⇒ wp(LoopBody , I ) for loops


