Program verification

Example revisited

```
// assume(n>2);
void partition(int a[], int n) {
  int pivot = a[0];
  int lo = 1, hi = n-1;
  while (lo <= hi) {
    while (lo < n && a[lo] <= pivot)
      10++;
    while (a[hi] > pivot)
      hi--;
    if (lo < hi)
      swap(a,lo,hi);
```

How can we reason about this program (fragment)?

The beginnings of program verification

Goal: formalizing programming language semantics

Robert W. Floyd. Assigning Meanings to Programs (1967)

" an adequate basis for formal definitions of the meanings of programs [...] in such a way that a rigorous standard is established for proofs"

"If the initial values of the program variables satisfy the relation R_1 , the final values on completion will satisfy the relation R_2 ."

Floyd: Assigning Meanings to Programs

Floyd's method: annotating a program (flowchart) with assertions

verification condition: a formula $V_c(P;Q)$ such that if P is true before executing c, then Q is true on termination

strongest verifiable consequent (for a program + an initial condition)
= strongest property true after after program execution

Formulas/assertion: expressed in *first order logic* (predicate logic)

Floyd: Assigning Meanings to Programs

Floyd's work:

develops general rules for combining verification conditions and specific rules to combine different instruction types

introduces invariants for reasoning about cycles

handles termination using a positive decreasing measure

C.A.R. Hoare. An Axiomatic Basis for Computer Programming (1969)

- works with program text, not flowcharts
- like Floyd, uses preconditions and postconditions for statements,
- the Hoare triple notation better highlights the relation between statement and the two assertions

- Notation partial correctness $\{P\}$ S $\{Q\}$
- If S is executed in a state that satisfies P and S terminates
 - \Rightarrow the resulting state satisfies Q

- Notation partial correctness {P} S {Q}
 If S is executed in a state that satisfies P and S terminates
 ⇒ the resulting state satisfies Q
- Similar statements for $total\ correctness\ [P]\ S\ [Q]$
- If S is executed in a state that satisfies P
 - \Rightarrow then *S* terminates and the resulting state satisfies *Q*

- Notation partial correctness {P} S {Q}
 If S is executed in a state that satisfies P and S terminates
 ⇒ the resulting state satisfies Q
- Similar statements for *total correctness* [P] S [Q]

If S is executed in a state that satisfies P \Rightarrow then S terminates and the resulting state satisfies Q

Rigorous example: C.A.R. Hoare. Proof of a Program: FIND (1971)

Hoare's rules (axioms)

Are defined for each individual statement by combining them, we can reason about whole programs

Hoare's rules (axioms)

Are defined for each individual statement by combining them, we can reason about whole programs

Assignment:
$$\overline{\{Q[x/E]\} \times := E \{Q\}}$$
 where $Q[x/E]$ substitutes E for x in Q

e.g.:
$$\{x = y - 2\}$$
 $x := x + 2$ $\{x = y\}$

(in the result, x=y, we substitute x with the assigned expression, x+2 and get x+2=y, so x=y-2)

Note: the "backwards" writing (P as a function of Q) simplifies the rule

Hoare's rules (axioms)

Sequencing:
$$\frac{\{P\}\ S_1\ \{Q\}\ \{Q\}\ S_2\ \{R\}}{\{P\}\ S_1; S_2\ \{R\}}$$

Decision:
$$\frac{\{P \land E\} \ S_1 \ \{Q\} \qquad \{P \land \neg E\} \ S_2 \ \{Q\}}{\{P\} \ \text{if } E \ \text{then} \ S_1 \ \text{else} \ S_2 \ \{Q\}}$$

Hoare's rules (cont.)

Loop (with initial test): is key in reasoning about programs

– we must find an *invariant* I= a property preserved by every execution of the cycle (true each time between iterations)

Hoare's rules (cont.)

Loop (with initial test): is key in reasoning about programs

- we must find an *invariant* I= a property preserved by every execution of the cycle (true each time between iterations)
- if cycle is entered (E), invariant is maintained after one iteration S
- if cycle is not entered $(\neg E)$, invariant implies postcondition Q

Hoare's rules (cont.)

Loop (with initial test): is key in reasoning about programs

- we must find an *invariant* I= a property preserved by every execution of the cycle (true each time between iterations)
- if cycle is entered (E), invariant is maintained after one iteration S
- if cycle is not entered $(\neg E)$, invariant implies postcondition Q

Hoare rule for while

$$\frac{\{I \land E\} \ S \ \{I\} \qquad I \land \neg E \Rightarrow Q}{\{I\} \ \text{while } E \ \text{do} \ S \ \{Q\}}$$

Example of applying Hoare rules

Find n knowing it's initially between lo and hi:

```
Consider \{P\} * x = 2 \{v + *x = 4\}
What is the precondition P?
```

Consider
$$\{P\}$$
 * $x = 2$ { $v + *x = 4$ }
What is the precondition P ?

Right answer:

$$v = 2 \lor x = \&v$$

But applying assignment rule (v + *x = 4)[*x/2] loses the second case...

We must model memory. m = memory, a = address, d = data Consider the functions rd(m, a) return d and wr(m, a, d) return m'

We must model memory. m= memory, a= address, d= data Consider the functions rd(m,a) return d and wr(m,a,d) return m'

Rule:
$$rd(wr(m, a_1, d), a_2) = \begin{cases} d & \text{if } a_2 = a_1 \\ rd(m, a_2) & \text{if } a_2 \neq a_1 \end{cases}$$

We must model memory. m= memory, a= address, d= data Consider the functions rd(m,a) return d and wr(m,a,d) return m'

Rule:
$$rd(wr(m, a_1, d), a_2) = \begin{cases} d & \text{if } a_2 = a_1 \\ rd(m, a_2) & \text{if } a_2 \neq a_1 \end{cases}$$

We must derive a property of memory m from the relation: rd(wr(m, x, 2), &v) + rd(wr(m, x, 2), x) = 4

We must model memory. m= memory, a= address, d= data Consider the functions rd(m,a) return d and wr(m,a,d) return m'

Rule:
$$rd(wr(m, a_1, d), a_2) = \begin{cases} d & \text{if } a_2 = a_1 \\ rd(m, a_2) & \text{if } a_2 \neq a_1 \end{cases}$$

We must derive a property of memory m from the relation: rd(wr(m, x, 2), &v) + rd(wr(m, x, 2), x) = 4

$$rd(wr(m, x, 2), \&v) + 2 = 4$$

 $rd(wr(m, x, 2), \&v) = 2$

We must model memory. m = memory, a = address, d = data Consider the functions rd(m, a) return d and wr(m, a, d) return m'

Rule:
$$rd(wr(m, a_1, d), a_2) = \begin{cases} d & \text{if } a_2 = a_1 \\ rd(m, a_2) & \text{if } a_2 \neq a_1 \end{cases}$$

We must derive a property of memory m from the relation:

$$rd(wr(m, x, 2), \&v) + rd(wr(m, x, 2), x) = 4$$

 $rd(wr(m, x, 2), \&v) + 2 = 4$
 $rd(wr(m, x, 2), \&v) = 2$
 $x = \&v \land 2 = 2 \lor x \neq \&v \land rd(m, \&v) = 2$
 $x = \&v \lor v = 2$

Dijkstra's weakest precondition operator

E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of Programs (1975)

- for a statement S and given postcondition Q there can be several preconditions P such that $\{P\}$ S $\{Q\}$ or [P] S [Q].
- Dijkstra establishes a *necessary and sufficient* precondition wp(S, Q) for successful termination of S with postcondition Q.

Dijkstra's weakest precondition operator

E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of Programs (1975)

- for a statement S and given postcondition Q there can be several preconditions P such that $\{P\}$ S $\{Q\}$ or [P] S [Q].
- Dijkstra establishes a *necessary and sufficient* precondition wp(S, Q) for successful termination of S with postcondition Q.
- necessary (weakest): if [P] S[Q] then $P \Rightarrow wp(S,Q)$
- wp is a predicate transformer (transforms post- into precondition)
- allows defining a calculus with such transformations

Dijkstra's preconditions (cont.)

Assignment:
$$wp(x := E, Q) = Q[x/E]$$
 (see Hoare's rule)

Sequencing:
$$wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$$

Decision:

$$wp(\text{if } E \text{ then } S_1 \text{ else } S_2, Q)$$

= $(E \Rightarrow wp(S_1, Q)) \land (\neg E \Rightarrow wp(S_2, Q))$

Dijkstra's preconditions (cont.)

For loops, we need a recurrent computation

Define wp_k , assuming loop finishes in at most k iteration:

$$egin{aligned} ℘_0(\mathsf{while}\ E\ \mathsf{do}\ S,Q) = \neg E \Rightarrow Q \quad (\mathsf{loop\ not\ entered}) \ ℘_{k+1}(\mathsf{while}\ E\ \mathsf{do}\ S,Q)) \ &= (E \Rightarrow wp(S,wp_k(\mathsf{while}\ E\ \mathsf{do}\ S,Q)))\ \land\ (\neg E \Rightarrow Q) \end{aligned}$$

Dijkstra's preconditions (cont.)

For loops, we need a recurrent computation

Define wp_k , assuming loop finishes in at most k iteration:

$$egin{aligned} ℘_0(\mathsf{while}\ E\ \mathsf{do}\ S,Q) = \neg E \Rightarrow Q \quad (\mathsf{loop\ not\ entered}) \ ℘_{k+1}(\mathsf{while}\ E\ \mathsf{do}\ S,Q)) \ &= (E \Rightarrow wp(S,wp_k(\mathsf{while}\ E\ \mathsf{do}\ S,Q)))\ \land\ (\neg E \Rightarrow Q) \end{aligned}$$

 $(\le k+1 \text{ iterations} \Leftrightarrow \text{one iteration followed by } \le k, \text{ or no iteration;}$ equivalent with decomposing the first while into an if)

⇒ can be written as a fixpoint formula

Recap: verification by theorem proving

- 1. Write Hoare triples / Dijkstra's preconditions
- 2. Check the chain of implications (with a decision procedure / theorem prover)

Examples:

```
with Hoare's sequencing rule check Pre \Rightarrow wp(Prog, Post) check I \land E \Rightarrow wp(LoopBody, I) for loops
```