
Black-Box Testing

Types of black-box testig
Equivalence class partitioning

Boundary testing
Cause-effect analysis
Exploratory testing

“Black-Box” Testing

Product is viewed as an opaque system
(no access to internal details – this includes source)

Why black-box testing ?
applicable to any product
no effort for source code analysis
applicable from simple to complex
and in a variety of situations

Types of black-box testing [Kaner]

Or: where do we start testing from ?

Function testing
test each function in isolation; basic functionality
tests are credible, easy to evaluate, not very powerful

Domain testing
essence: sample equivalence classes through representatives
initially one variable at a time, then combinations
well-chosen values ⇒ powerful, informative tests

Specification-based testing
tests for every claim in the specificatin/req. list/model/manual
conformance is very significant; choose representative tests
can go deeper: find errors/omissions/ambiguities/limit cases in spec

Types of black-box testing [Kaner]

Or: where do we start testing from ?

Function testing
test each function in isolation; basic functionality
tests are credible, easy to evaluate, not very powerful

Domain testing
essence: sample equivalence classes through representatives
initially one variable at a time, then combinations
well-chosen values ⇒ powerful, informative tests

Specification-based testing
tests for every claim in the specificatin/req. list/model/manual
conformance is very significant; choose representative tests
can go deeper: find errors/omissions/ambiguities/limit cases in spec

Types of black-box testing [Kaner]

Or: where do we start testing from ?

Function testing
test each function in isolation; basic functionality
tests are credible, easy to evaluate, not very powerful

Domain testing
essence: sample equivalence classes through representatives
initially one variable at a time, then combinations
well-chosen values ⇒ powerful, informative tests

Specification-based testing
tests for every claim in the specificatin/req. list/model/manual
conformance is very significant; choose representative tests
can go deeper: find errors/omissions/ambiguities/limit cases in spec

Types of black-box testing [Kaner]

Or: where do we start testing from ?

Function testing
test each function in isolation; basic functionality
tests are credible, easy to evaluate, not very powerful

Domain testing
essence: sample equivalence classes through representatives
initially one variable at a time, then combinations
well-chosen values ⇒ powerful, informative tests

Specification-based testing
tests for every claim in the specificatin/req. list/model/manual
conformance is very significant; choose representative tests
can go deeper: find errors/omissions/ambiguities/limit cases in spec

Types of black-box testing [Kaner, cont.]

Risk-based testing
imagine a way program could fail, test for it
tests must be powerful, credible, motivating

Stress testing: several definitions
1) under burst of activity
2) at/beyond specified limits, to cause failure (IEEE std.)
3) to see how the program fails (important!)

High-volume automated testing

User testing
real, not simulated users (beta testing)
using specified scenarios, or freely
credible, motivating, not always powerful (depends on user)

Types of black-box testing [Kaner, cont.]

Risk-based testing
imagine a way program could fail, test for it
tests must be powerful, credible, motivating

Stress testing: several definitions
1) under burst of activity
2) at/beyond specified limits, to cause failure (IEEE std.)
3) to see how the program fails (important!)

High-volume automated testing

User testing
real, not simulated users (beta testing)
using specified scenarios, or freely
credible, motivating, not always powerful (depends on user)

Types of black-box testing [Kaner, cont.]

Risk-based testing
imagine a way program could fail, test for it
tests must be powerful, credible, motivating

Stress testing: several definitions
1) under burst of activity
2) at/beyond specified limits, to cause failure (IEEE std.)
3) to see how the program fails (important!)

High-volume automated testing

User testing
real, not simulated users (beta testing)
using specified scenarios, or freely
credible, motivating, not always powerful (depends on user)

Types of black-box testing [Kaner, cont.]

Risk-based testing
imagine a way program could fail, test for it
tests must be powerful, credible, motivating

Stress testing: several definitions
1) under burst of activity
2) at/beyond specified limits, to cause failure (IEEE std.)
3) to see how the program fails (important!)

High-volume automated testing

User testing
real, not simulated users (beta testing)
using specified scenarios, or freely
credible, motivating, not always powerful (depends on user)

Types of black-box testing [Kaner, cont.]

Scenario Testing
specific use case; may be model-based
credible, motivating, easy to evaluate, complex
going deeper: use scenario in limit / hostile case

State-model-based testing
model: finite-state automaton
analyze model, then product with model-based tests

Regression testing
test set designed for reuse after every program change
no longer powerful, but well documented for maintenance

Exploratory testing
actively guides testing process
designs new tests based on info offered by existing tests

Types of black-box testing [Kaner, cont.]

Scenario Testing
specific use case; may be model-based
credible, motivating, easy to evaluate, complex
going deeper: use scenario in limit / hostile case

State-model-based testing
model: finite-state automaton
analyze model, then product with model-based tests

Regression testing
test set designed for reuse after every program change
no longer powerful, but well documented for maintenance

Exploratory testing
actively guides testing process
designs new tests based on info offered by existing tests

Types of black-box testing [Kaner, cont.]

Scenario Testing
specific use case; may be model-based
credible, motivating, easy to evaluate, complex
going deeper: use scenario in limit / hostile case

State-model-based testing
model: finite-state automaton
analyze model, then product with model-based tests

Regression testing
test set designed for reuse after every program change
no longer powerful, but well documented for maintenance

Exploratory testing
actively guides testing process
designs new tests based on info offered by existing tests

Types of black-box testing [Kaner, cont.]

Scenario Testing
specific use case; may be model-based
credible, motivating, easy to evaluate, complex
going deeper: use scenario in limit / hostile case

State-model-based testing
model: finite-state automaton
analyze model, then product with model-based tests

Regression testing
test set designed for reuse after every program change
no longer powerful, but well documented for maintenance

Exploratory testing
actively guides testing process
designs new tests based on info offered by existing tests

Test Strategies [Kaner, Black-Box Testing course]

1. Start with simple (obvious) tests (grave if they fail)

2. Test each function, understand behavior before criticizing.

3. Test broadly before deeply. Cover program before focusing.

4. More powerful tests, boundary conditions

5. Expand scope, look for challenges

6. Freestyle exploratory testing

Equivalence class partitioning [Myers]

Analyze domain of values for each variable or input,
identify sets for which we assume tests behave alike
⇒ used to generate a set of “interesting” conditions for testing

Desirable: a test case should cover several relevant conditions (should
reduce number of conditions to analyze by more than one)

For every condition: tests with valid and invalid values

Myers suggests using a table of the form

Condition Valid equiv. classes Invalid equiv. classes

How to choose equivalence classes

Depending on the variable type / domain:

For an interval:
one valid case (inside), two invalid ones (on both sides)

will refine for boundary testing

For a fixed (specified) number:
one valid case, two invalid cases (larger, smaller)

For enumeration type: each value, plus an invalid one

Combining equivalence classes into test cases:
cover as many valid classes with one test case
generate a separate test for each invalid class

(if combined, an invalid condition may mask another)

How to choose equivalence classes

Depending on the variable type / domain:

For an interval:
one valid case (inside), two invalid ones (on both sides)

will refine for boundary testing

For a fixed (specified) number:
one valid case, two invalid cases (larger, smaller)

For enumeration type: each value, plus an invalid one

Combining equivalence classes into test cases:
cover as many valid classes with one test case
generate a separate test for each invalid class

(if combined, an invalid condition may mask another)

How to choose equivalence classes

Depending on the variable type / domain:

For an interval:
one valid case (inside), two invalid ones (on both sides)

will refine for boundary testing

For a fixed (specified) number:
one valid case, two invalid cases (larger, smaller)

For enumeration type: each value, plus an invalid one

Combining equivalence classes into test cases:
cover as many valid classes with one test case
generate a separate test for each invalid class

(if combined, an invalid condition may mask another)

How to choose equivalence classes

Depending on the variable type / domain:

For an interval:
one valid case (inside), two invalid ones (on both sides)

will refine for boundary testing

For a fixed (specified) number:
one valid case, two invalid cases (larger, smaller)

For enumeration type: each value, plus an invalid one

Combining equivalence classes into test cases:
cover as many valid classes with one test case
generate a separate test for each invalid class

(if combined, an invalid condition may mask another)

Example to work through

Declaring dimensions of an array in FORTRAN [Myers]

DIMENSION array-descrp (, array-descrp)*
array-descrp ::= name (dim (, dim)*)

name ::= letter (letter | digit)* (1..6 chars)
dim ::= [lower-bound :] upper-bound
bound ::= int-constant | name

-65534 ≤ lower-bound ≤ upper-bound ≤ 65535
lower-bound e implicit 1

Boundary testing

Refines equivalence class partitioning in two ways:

1) each limit of an equivalence class covered by a test
implicitly: also values above / below limit

2) derive tests also from domain of output values, not just input
(not just input value domain)

Working example [Burnstein]: identifiers of 3–15 alphanumeric chars, the
first two being letters

Constraints (each with equivalence classes/boundary conditions):
alphanumeric characters
length (min - 1, min, intermediate, max, max + 1)
first two chars

Boundary testing

Refines equivalence class partitioning in two ways:

1) each limit of an equivalence class covered by a test
implicitly: also values above / below limit

2) derive tests also from domain of output values, not just input
(not just input value domain)

Working example [Burnstein]: identifiers of 3–15 alphanumeric chars, the
first two being letters

Constraints (each with equivalence classes/boundary conditions):
alphanumeric characters
length (min - 1, min, intermediate, max, max + 1)
first two chars

Testing using cause-effect analysis

Equivalence partitioning does not focus on combining conditions

Principle: in a combination of conditions, each factor should be covered

Steps:

decompose spec into manageable-size components

identify causes: input conditions/equivalence classes

identify effects: output conditions/change of state

express specification as set of rules or Boolean diagram

generate tests

Testing using cause-effect analysis

Example [Myers]

The character in column 1 must be an A or a B. The character
in column 2 must be a digit. In this situation, the file update is
made. If the first character is incorrect, message X12 is issued.
If the second character is not a digit, message X13 is issued.

Tests are generated starting from output (effect)
successively setting the causes that should produce this effect

for an OR condition, each cause to true individually (the rest to false)
for an AND condition, each cause to false individually (the rest to true)

similar to MC/DC coverage, but on the specification, not on code

Higher-level strategies: Exploratory testing

cf. James Bach:
simultaneous learning, design and execution of tests

situation-dependent

results obtained from tests determine subsequent testing

Bug finding strategies

[James Whittaker, How to Break Software]

Test perspectives:

1. User interface
black-box: inputs, outputs
open box: focus on state, interactions

2. System interface
file system
operating system (concurrency, memory, network, etc.)

What kind of tests to try ?

Invalid inputs (wrong type – e.g. objects/images/files of the wrong kind;
small/large size, limit values)

is error handled ? with meaningful error messages ?

Forcing reinitialization: input null/invalid values.
Does the system revert to default values?

Inputs with invalid characters / control chars / special chars

Buffer overflow
not only when data is input, but also on future use
(limits may be different)

Combinations / interactions between inputs
two large inputs; one large and one small

Repetitive testing (loop traversal)
memory usage; (re)initialization problems

What kind of tests to try ?

Invalid inputs (wrong type – e.g. objects/images/files of the wrong kind;
small/large size, limit values)

is error handled ? with meaningful error messages ?

Forcing reinitialization: input null/invalid values.
Does the system revert to default values?

Inputs with invalid characters / control chars / special chars

Buffer overflow
not only when data is input, but also on future use
(limits may be different)

Combinations / interactions between inputs
two large inputs; one large and one small

Repetitive testing (loop traversal)
memory usage; (re)initialization problems

What kind of tests to try ?

Invalid inputs (wrong type – e.g. objects/images/files of the wrong kind;
small/large size, limit values)

is error handled ? with meaningful error messages ?

Forcing reinitialization: input null/invalid values.
Does the system revert to default values?

Inputs with invalid characters / control chars / special chars

Buffer overflow
not only when data is input, but also on future use
(limits may be different)

Combinations / interactions between inputs
two large inputs; one large and one small

Repetitive testing (loop traversal)
memory usage; (re)initialization problems

What kind of tests to try ?

Invalid inputs (wrong type – e.g. objects/images/files of the wrong kind;
small/large size, limit values)

is error handled ? with meaningful error messages ?

Forcing reinitialization: input null/invalid values.
Does the system revert to default values?

Inputs with invalid characters / control chars / special chars

Buffer overflow
not only when data is input, but also on future use
(limits may be different)

Combinations / interactions between inputs
two large inputs; one large and one small

Repetitive testing (loop traversal)
memory usage; (re)initialization problems

What kind of tests to try ?

Invalid inputs (wrong type – e.g. objects/images/files of the wrong kind;
small/large size, limit values)

is error handled ? with meaningful error messages ?

Forcing reinitialization: input null/invalid values.
Does the system revert to default values?

Inputs with invalid characters / control chars / special chars

Buffer overflow
not only when data is input, but also on future use
(limits may be different)

Combinations / interactions between inputs
two large inputs; one large and one small

Repetitive testing (loop traversal)
memory usage; (re)initialization problems

What kind of tests to try ?

Invalid inputs (wrong type – e.g. objects/images/files of the wrong kind;
small/large size, limit values)

is error handled ? with meaningful error messages ?

Forcing reinitialization: input null/invalid values.
Does the system revert to default values?

Inputs with invalid characters / control chars / special chars

Buffer overflow
not only when data is input, but also on future use
(limits may be different)

Combinations / interactions between inputs
two large inputs; one large and one small

Repetitive testing (loop traversal)
memory usage; (re)initialization problems

What kind of tests to try? (cont.)

Explore one input in different contexts
different answers: are all cases handled?

Generating invalid outputs
sometimes in a roundabout way (e.g. 29 feb. 2000 → 2001)

UI attacks: refresh screen (done completely?)

Try to overstep internal limits
e.g. create table of maximum size, then add a row

Computations with invalid operators / operands

Test recursive inclusions (frame in frame; footnote in footnote, etc.)

What kind of tests to try? (cont.)

Explore one input in different contexts
different answers: are all cases handled?

Generating invalid outputs
sometimes in a roundabout way (e.g. 29 feb. 2000 → 2001)

UI attacks: refresh screen (done completely?)

Try to overstep internal limits
e.g. create table of maximum size, then add a row

Computations with invalid operators / operands

Test recursive inclusions (frame in frame; footnote in footnote, etc.)

What kind of tests to try? (cont.)

Explore one input in different contexts
different answers: are all cases handled?

Generating invalid outputs
sometimes in a roundabout way (e.g. 29 feb. 2000 → 2001)

UI attacks: refresh screen (done completely?)

Try to overstep internal limits
e.g. create table of maximum size, then add a row

Computations with invalid operators / operands

Test recursive inclusions (frame in frame; footnote in footnote, etc.)

What kind of tests to try? (cont.)

Explore one input in different contexts
different answers: are all cases handled?

Generating invalid outputs
sometimes in a roundabout way (e.g. 29 feb. 2000 → 2001)

UI attacks: refresh screen (done completely?)

Try to overstep internal limits
e.g. create table of maximum size, then add a row

Computations with invalid operators / operands

Test recursive inclusions (frame in frame; footnote in footnote, etc.)

What kind of tests to try? (cont.)

Explore one input in different contexts
different answers: are all cases handled?

Generating invalid outputs
sometimes in a roundabout way (e.g. 29 feb. 2000 → 2001)

UI attacks: refresh screen (done completely?)

Try to overstep internal limits
e.g. create table of maximum size, then add a row

Computations with invalid operators / operands

Test recursive inclusions (frame in frame; footnote in footnote, etc.)

What kind of tests to try? (cont.)

Explore one input in different contexts
different answers: are all cases handled?

Generating invalid outputs
sometimes in a roundabout way (e.g. 29 feb. 2000 → 2001)

UI attacks: refresh screen (done completely?)

Try to overstep internal limits
e.g. create table of maximum size, then add a row

Computations with invalid operators / operands

Test recursive inclusions (frame in frame; footnote in footnote, etc.)

