
The Evolution Matrix: Recovering Software Evolution
using Software Visualization Techniques

Michele Lanza
Software Composition Group

University Of Bern, Switzerland

lanza@iam.unibe.ch
- FULL PAPER -

ABSTRACT
One of the major problems in software evolution is coping with the
complexity which stems from the huge amount of data that must
be considered. The current approaches to deal with that problem
all aim at a reduction of complexity and a filtering of the relevant
information. In this paper we propose an approach based on a com-
bination of software visualization and software metrics which we
have already successfully applied in the field of software reverse
engineering. Using this approach we discuss a simple and effective
way to visualize the evolution of software systems which helps to
recover the evolution of object oriented software systems.

Keywords
Software Visualization, Software Metrics, Reverse Engineering

1. INTRODUCTION
One of the major problems in software evolution is coping with

the complexity which stems from the huge amount of data that must
be considered.

A technique which can be used to reduce complexity is software
visualization, as a good visual display allows the human brain to
study multiple aspects of complex problems in parallel (This is of-
ten phrased as “One picture conveys a thousand words”).

Another useful approach when dealing with large amounts of
complex data are software metrics. Metrics can help to assess the
complexity of software and to discover artifacts with unusual mea-
surement values (i.e., in this context very large classes or subsys-
tems, etc.).

In this paper we present a combination of these two approaches,
with which we obtain the evolution matrix. It allows for a quick un-
derstanding of the evolution of an object-oriented system at system
and class level.

We would like to stress that the approach presented here does not
depend on a particular language, as our underlying metamodel is
language-independent [5, 3]. However we present results obtained
on Smalltalk case studies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

This paper is structured as follows: in the next section we present
the evolution matrix and a categorization of classes based on their
visualization within the evolution matrix. Afterwards we apply and
discuss this approach in the section on the case studies. We then
discuss shortly CodeCrawler and Moose, the tools used to gener-
ate the evolution matrix. We conclude the paper by discussing the
benefits and limits of our approach, as well as related work, and by
giving an outlook on our future work.

2. THE EVOLUTION MATRIX VIEW
In this section we present the evolution matrix. We first discuss

the visualization technique we use and then show an example ma-
trix. We then examine the characteristics of the evolution matrix.
At the end of this section we introduce a categorization of classes
based on their visualization within the evolution matrix.

2.1 Visualizing Classes using Metrics
We use two-dimensional boxes to represent classes and use the

width and height of the boxes to reflect the metric measurements of
the classes, as we see in Figure 1. This approach has been presented
in [13] and [2]. In the evolution matrix discussed in this paper we
visualize classes and therefore use the metrics number of methods
(NOM) for the width and number of instance variables (NIV) for
the height, although in our tool we can choose other metrics.

Width Metric

Height
Metric

CLASS

Figure 1: A graphical representation of classes using metrics.

2.2 Characteristics of the Evolution Matrix
The evolution matrix displays the evolution of the classes of a

software system. Each column of the matrix represents a version
of the software, while each row represents the different versions of
the same class. The columns are sorted alphabetically. We see a
schematic evolution matrix Figure 2.

The evolution matrix allows us to make statements on the evo-
lution of an object oriented system at two granularity levels, which
we discuss below: System Level and Class Level.



Version1 Version 2 Version 3 Version 4

Class C

Class D

...

Class A

Class B

TIME

Figure 2: A schematic display of the Evolution Matrix.

2.2.1 Characteristics at System Level
As we see schematically in Figure 3 at system level we are able

to recover the following information regarding the evolution of a
system:

� Size of the system. The number of present classes within one
column is the number of classes of that particular version of
the software. Thus the height of the column is an indicator
of the system’s size in terms of classes.

� Addition and removal of classes. The classes which have
been added to the system at a certain point in time can easily
be detected, as they are they are added at the bottom of the
column of that version.

Removed classes can easily be detected as well, as their ab-
sence will leave empty space on the matrix from that version
on.

� Growth and stagnation phases in the evolution. The over-
all shape of the evolution matrix is an indicator for the evolu-
tion of the whole system. A growth phase is indicated by an
increase in the height of the matrix, while during a stagnation
phase (no classes are being added) the height of the matrix
will stay the same.

TIME (VERSIONS)

FIRST VERSION
OF THE SYSTEM

REMOVED CLASSES

LAST VERSION

MAJOR LEAP
IN THE 

EVOLUTION

GROWTH PHASE STAGNATION PHASE

Figure 3: Some characteristics of the Evolution Matrix.

2.2.2 Characteristics at Class Level
We visualize each class using two different metrics. We have

decided upon the number of methods and the number of variables.
Since we visualize different versions of the same class, we can ef-
fectively see if the class grows, shrinks or stays the same from one
version to another. In the figures in the paper we use colors to de-
note the changes from version to version: We use black for growing
classes, light gray for shrinking classes and white for classes which
stay the same.

2.3 A Categorization of Classes based on the
Evolution Matrix

We present here a categorization of classes based on the evolu-
tion matrix, i.e., based on the visualization of different versions of
a class. The categorization stems from the experiences we obtained
while applying our approach on several case studies. A large part,
but not all, of the vocabulary used here is taken out of the domain
of astronomy. We do so because we have found that some of the
names from this domain convey extremely well the described types
of evolution. This vocabulary is of utmost importance because a
complex context and situations, like the evolution of a class, can
be communicated to another person in an efficient way. This idea
comes from the domain of patterns [7].

During our case studies we have encountered several ways in
which a class can evolve over its lifetime. We list here the most
prominent types. Note that the categories introduced here are not
mutually exclusive, i.e. a class can behave like a pulsar for a certain
part of its life and then become a white dwarf for the rest of its life.

� Pulsar. A pulsar class grows and shrinks repeatedly during
its lifetime, as we see in Figure 5. The growth phases are due
to additions of functionality, while the shrinking phases are
most probably due to refactorings and restructurings of the
class. Note that a refactoring may also make a class grow,
for example when a long method is broken down into many
shorter methods. Pulsar classes can be seen as hotspots in
the system: for every new version of the system changes on
a pulsar class must be performed.

TIME

Figure 5: The Visualization of a Pulsar class.

� Supernova. A supernova is a class which suddenly explodes
in size. The reasons for such an explosive growth may vary,
although we have already made out some common cases:

– Major refactorings of the system which have caused a
massive shift of functionality towards a class.

– Data holder classes which mainly define attributes whose
values can be accessed. Due to the simple structure of
such classes it is easy to make such a class grow rapidly.

– So-called sleeper classes. A class which has been de-
fined a long time ago but is waiting to be filled with
functionality. Once the moment comes the developers
may already be certain about the functionality to be in-
troduced and do so in a short time.

Supernova classes should be examined closer as their accel-
erated growth rate may be a sign of unclean design or intro-
duce new bugs into the system.



Figure 4: The Evolution Matrix of MooseFinder.

TIME

Figure 6: The Visualization of a Supernova class.

� White Dwarf. A white dwarf is a class who used to be of
a certain size, but due to varying reasons lost the functional-
ity it defined to other classes and now trundles along in the
system without a real meaning. We can see a schematic dis-
play of a white dwarf class in Figure 7. White dwarf classes
should be examined for signs of dead code, i.e. they may be
obsolete and therefore be removed.

TIME

Figure 7: The Visualization of a White Dwarf class.

� Red Giant. A red giant class can be seen as a permanent god
class [15], which over several versions keeps on being very
large. God classes tend to implement too much functionality
and are quite difficult to refactor, for example using a split
class refactoring [6].

� Stagnant. A stagnant class is one which does not change
over several versions of the software system it belongs to. We
list here a few reasons which may lead to a stagnant class:

– Dead code. The class may have become obsolete at a
certain point in time, but was not removed for varying
reasons.

– Good design. Stagnant classes can have a good im-
plementation or a simple structure which makes them
resistant to changes affecting the system.

– The class belongs to a subsystem on which no work is
being performed.

� Dayfly. A dayfly class has a very short lifetime, i.e., it often
exists only during one version of the system. Such classes
may have been created to try out an idea which was then
dropped.

� Persistent. A persistent class has the same lifespan as the
whole system. It has been there from the beginning and is
therefore part of the original design. Persistent classes should
be examined, as they may represent cases of dead code that
no developer dares to remove as there is no one being able to
explain the purpose of that class.

3. CASE STUDIES
In this section we present some case studies whose evolution we

have visualized using the evolution matrix view. We shortly intro-
duce each case study, and then show and discuss their evolution
matrix.

3.1 MooseFinder
MooseFinder [17] is an average sized application written in Vi-

sualWorks Smalltalk by one developer in little more than one year
as part of a diploma. We have taken 38 versions of the software as



Figure 8: The Evolution Matrix of Sherlock.

a case study.

Discussion. In Figure 4 we can see the evolution matrix of
MooseFinder. We see that the first version on the left has a small
number of classes and that of those only few survived until the last
version, i.e., are persistent classes. We can also see there have been
two major leaps and one long phase of stagnation. Note that the
second leap is in fact a case of massive class renaming: many
classes have been removed in the previous version and appear as
added classes in the next version. There is also a version with a
few dayfly classes. The classes themselves rarely change in size
except the class annotated as a renamed pulsar class, which at first
sight seems to be one of the central classes in the system.

3.2 Supremo
Supremo [12] is also written in VisualWorks Smalltalk. We have

taken 21 versions of this application as a case study.

Discussion. In Figure 8 we see the evolution matrix of Supremo.
We can see that there is apart from a stagnation phase a constant
growth of the system with three major growth phases. Note that the
last growth phase is due to a massive renaming of classes. There
are several pulsar classes which strike the eye, some of which have

considerable size. We can also see that from the original classes
only two are persistent, i.e. the whole system renewed itself nearly
completely.

4. CODECRAWLER AND MOOSE
CodeCrawler is the tool used to generate the views presented in

this paper. CodeCrawler supports reverse engineering through the
combination of metrics and software visualization [13, 2, 4]. Its
power and flexibility, based on simplicity and scalability, has been
repeatedly proven in several large scale industrial case studies.

CodeCrawler is implemented on top of Moose. Moose is a lan-
guage independent reengineering environment written in Smalltalk.
It is based on the FAMIX metamodel [3], which provides for a lan-
guage independent representation of object-oriented sources and
contains the required information for the reengineering tasks per-
formed by our tools. It is language independent, because we need
to work with legacy systems written in different implementation
languages. It is extensible, since we cannot know in advance all in-
formation that is needed in future tools, and since for some reengi-
neering problems tools might need to work with language-specific
information, we allow for language plug-ins that extend the model
with language-specific features. Next to that, we allow tool plug-
ins to extend as well the model with tool-specific information.



Figure 9: A simplified view of the FAMIX metamodel.

A simplified view of the FAMIX metamodel comprises the main
object-oriented concepts - namely Class, Method, Attribute and In-
heritance - plus the necessary associations between them - namely
Invocation and Access (see Figure 9).

Moose can be used in the context of evolution as it allows several
models to be loaded at the same time. If we load models of different
versions of the same software we get a sequence of snapshots of the
evolution of the software. In this paper we use this technique as a
base for the evolution matrix visualization.

5. CONCLUSION
In this paper we have presented the evolution matrix, a novel

way to visualize the evolution of classes in object oriented software
systems. The evolution matrix can greatly reduce the amount of
data one has to deal with when analyzing the evolution of software
using a simple visualization approach. Based on the visualizations
obtained we have introduced a categorization of classes based on
their personal evolution. We have applied the evolution matrix on
some case studies to verify the usefulness of this approach.

5.1 Limits of the Approach
The approach presented here is limited in the following ways:

� The effectiveness depends on the number of available ver-
sions of a software (the more the better), as well as the amount
of changes between one version and the next: as our ap-
proach aims mostly at the differences between two versions,
in the case of two versions which are too distant from each
other in terms of changes many details get lost.

� A major aspect of classes in object-oriented programming is
their capability to inherit from each other: a class seldom
exists on its own, but is often embedded in the context of its
inheritance hierarchy. This aspect goes lost with the current
evolution matrix visualization.

� The approach is not immune to name changes. If a class has
been renamed at a certain point in time, it will be treated as
a class which has been removed and a new class which has
been added.

� Software visualization techniques must deal with the issue of
scalability. In the case of the evolution matrix the approach
has worked for systems of nearly 100 classes. For larger sys-
tems we end up with a very large matrix where mainly gen-
eral statements about the system’s evolution can be made,
rather than precise statements about particular classes.

5.2 Related Work
Among the various approaches to understand software evolution

that have been proposed in the literature, graphical representations
of software have long been accepted as comprehension aids.

Holt and Pak [10] present a visualization tool called GASE to
elucidate the architectural changes between different versions of a
system.

Rayside et al. [14] have built a tool called JPort for exploring
evolution between successive versions of the JDK. Their intent was
to provide a tool for detecting possible problem areas when devel-
opers wish to port their Java tools across versions of the JDK.

In [11, 16] Claudio Riva presents work which has similarities,
i.e. he also visualizes several versions of software (at subsystem
level) using colors. Through the obtained colored displays they can
make conclusions about the evolution of a system. Their approach
differs as they do not have actual software artifacts but only in-
formation about software releases. This implies that they cannot
verify the correctness of their informations. Our approach allows
us to enrich the display using metrics information as well as being
able to access every version of the software artifacts.

Burd and Munro have been analyzing the calling structure of
source code [1]. They transformed calling structures into a graph
using dominance relations to indicate call dependencies between
functions. Dominance trees were derived from call-directed-acyclic-
graphs [1]. The dominance trees show the complexity of the re-
lationships between functions and potential ripple effects through
change propagation.

Gall and Jazayeri examined the structure of a large telecommu-
nication switching system with a size of about 10 MLOC over sev-
eral releases [9]. The analysis was based on information stored
in a database of product releases, the underlying code was neither
available nor considered. They investigated first in measuring the
size of components, their growth and change rates. The aim was
to find conspicuous changes in the gathered size metrics and to
identify candidate subsystems for restructuring and reengineering.
A second effort on the same system focused on identifying logi-
cal coupling among subsystems in a way that potential structural
shortcomings could be identified and examined [8].

Most publications and tools that tackle the problem of software
evolution using software visualization work at higher abstraction
levels, i.e. systems, subsystems, etc. We provide a visualization of
classes as well as a categorization of classes based on that.

5.3 Future Work
In the future we plan to apply the evolution matrix approach on

large industrial case studies to evaluate its usefulness and scalabil-
ity. One of the major problems which we foresee is the availability
of several versions of an industrial system.

We also plan to extend and enrich the evolution matrix to in-
crease its usability. At this time the classes are treated as standalone
objects. We think the introduction of relationships between classes,
especially inheritance, will increase its usefulness.

The use of other metrics remains also to be explored. Prelimi-
nary uses of difference metrics have yielded interesting results, and
we plan to further explore this direction.

To tackle the problem of scalability we will introduce grouping
techniques to reduce the number of displayed entities. We also
plan to examine very large systems by visualizing higher level con-
structs like subsystems and applications instead of classes.

Acknowledgments. We would like to thank Stéphane Ducasse
for comments on drafts of this paper.



6. REFERENCES
[1] E. Burd and M. Munro. An initial approach towards

measuring and characterizing software evolution. In
Proceedings of WCRE’99, pages 168–174. IEEE Computer
Society, 1999.

[2] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering platform combining metrics and program
visualization. In F. Balmas, M. Blaha, and S. Rugaber,
editors, Proceedings WCRE’99 (6th Working Conference on
Reverse Engineering). IEEE, Oct. 1999.

[3] S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 - the
FAMOOS information exchange model. Technical report,
University of Berne, Aug. 1999.

[4] S. Ducasse and M. Lanza. Towards a methodology for the
understanding of object-oriented systems. Technique et
Science Informatique, 2001. To appear in Techniques et
Sciences Informatiques, Edition Speciale Reutilisation.

[5] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an
extensible language-independent environment for
reengineering object-oriented systems. In Proceedings of the
Second International Symposium on Constructing Software
Engineering Tools (CoSET 2000), June 2000.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, Reading, MA, 1995.

[8] K. H. H. Gall and M. Jazayeri. Detection of logical coupling
based on product release history. In ICSM’98 Proceedings
(International Conference on Software Maintenance), pages
190–198. IEEE Computer Society, 1998.

[9] R. K. H. Gall, M. Jazayeri and G. Yrausmuth. Software
evolution observations based on product release history. In
ICSM’97 Proceedings (International Conference on
Software Maintenance), pages 160–166. IEEE Computer
Society, 1997.

[10] R. Holt. Gase: visualizing software evolution-in-the-large. In
Proceedings of WCRE’96, pages 163–167. IEEE Computer
Society, 1996.

[11] M. Jazayeri, H. Gall, and C. Riva. Visualizing software
release histories: The use of color and third dimension. In
ICSM’99 Proceedings (International Conference on
Software Maintenance). IEEE Computer Society, 1999.

[12] G. G. Koni-N’Sapu. Supremo - a scenario based approach
for refactoring duplicated code in object oriented systems.
Diploma thesis, University of Bern, June 2001.

[13] M. Lanza. Combining metrics and graphs for object oriented
reverse engineering. Diploma thesis, University of Bern, Oct.
1999.

[14] D. Rayside, S. Kerr, and K. Kontogiannis. Change and
adaptive maintenance detection in java software systems. In
Proceedings of WCRE’98, pages 10–19. IEEE Computer
Society, 1998. ISBN: 0-8186-89-67-6.

[15] A. J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

[16] C. Riva. Visualizing software release histories: The use of
color and third dimension. Master’s thesis, Politecnico di
Milano, Milan, 1998.

[17] L. Steiger. Recovering the evolution of object oriented
software systems using a flexible query engine. Diploma
thesis, University of Bern, June 2001.


