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ABSTRACT

One of the major problemsin software evolution is coping with the
complexity which stems from the huge amount of data that must
be considered. The current approaches to deal with that problem
al aim at areduction of complexity and afiltering of the relevant
information. In this paper we propose an approach based on acom-
bination of software visualization and software metrics which we
have aready successfully applied in the field of software reverse
engineering. Using this approach we discussasimple and effective
way to visualize the evolution of software systemswhich helpsto
recover the evolution of object oriented software systems.
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1. INTRODUCTION

One of the major problems in software evolution is coping with
the complexity which stemsfrom the huge amount of datathat must
be considered.

A techniquewhich can be used to reduce complexity is software
visualization, as a good visual display alows the human brain to
study multiple aspectsof complex problemsin parallel (Thisis of-
ten phrased as“ One picture conveys athousand words”).

Another useful approach when dealing with large amounts of
complex data are software metrics. Metrics can help to assessthe
complexity of software and to discover artifacts with unusual mea-
surement values (i.e., in this context very large classes or subsys-
tems, etc.).

In this paper we present a combination of these two approaches,
with which we obtain the evolution matrix. It allowsfor aquick un-
derstanding of the evolution of an object-oriented system at system
and classlevel.

Wewould like to stressthat the approach presented here does not
depend on a particular language, as our underlying metamodel is
language-independent [5, 3]. However we present results obtained
on Smalltalk case studies.
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Thispaper is structured asfollows: in the next sectionwe present
the evolution matrix and a categorization of classes based on their
visualization within the evolution matrix. Afterwardswe apply and
discuss this approach in the section on the case studies. We then
discuss shortly CodeCrawler and Moose, the tools used to gener-
ate the evolution matrix. We conclude the paper by discussing the
benefitsand limits of our approach, aswell asrelated work, and by
giving an outlook on our future work.

2. THE EVOLUTION MATRIX VIEW

In this section we present the evolution matrix. We first discuss
the visualization technique we use and then show an example ma-
trix. We then examine the characteristics of the evolution matrix.
At the end of this section we introduce a categorization of classes
based on their visualization within the evolution matrix.

2.1 Visualizing Classes using Metrics

We use two-dimensional boxes to represent classes and use the
width and height of the boxesto reflect the metric measurements of
theclasses, asweseein Figure 1. Thisapproach hasbeen presented
in [13] and [2]. In the evolution matrix discussed in this paper we
visualize classes and therefore use the metrics number of methods
(NOM) for the width and number of instance variables (NIV) for
the height, although in our tool we can choose other metrics.
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Figure 1: A graphical representation of classes using metrics.
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2.2 Characteristics of the Evolution Matrix

The evolution matrix displays the evolution of the classes of a
software system. Each column of the matrix represents a version
of the software, while each row representsthe different versions of
the same class. The columns are sorted alphabetically. We see a
schematic evolution matrix Figure 2.

The evolution matrix allows us to make statements on the evo-
Iution of an object oriented system at two granularity levels, which
we discussbelow: System Level and ClassLevel.
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Figure 2: A schematic display of the Evolution Matrix.

221 Characterigticsat System Level

Aswe see schematically in Figure 3 at system level we are able
to recover the following information regarding the evolution of a
system:

o Size of the system. Thenumber of present classeswithin one
column is the number of classesof that particular version of
the software. Thus the height of the column is an indicator
of the system’ssizein terms of classes.

e Addition and removal of classes. The classes which have
been added to the system at a certain point in time can easily
be detected, as they are they are added at the bottom of the
column of that version.

Removed classes can easily be detected aswell, as their ab-
sencewill leave empty space on the matrix from that version
on.

e Growth and stagnation phases in the evolution. The over-
all shapeof the evolution matrix isan indicator for the evolu-
tion of the whole system. A growth phaseis indicated by an
increasein the height of the matrix, while during a stagnation
phase (no classes are being added) the height of the matrix
will stay the same.
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Figure 3: Some characteristics of the Evolution Matrix.

2.2.2 Characteristicsat Class Level

We visualize each class using two different metrics. We have
decided upon the number of methods and the number of variables.
Since we visualize different versions of the same class, we can ef-
fectively seeif the classgrows, shrinksor staysthe same from one
version to ancther. In the figuresin the paper we use colors to de-
note the changesfrom version to version: We use black for growing
classes, light gray for shrinking classesand white for classeswhich
stay the same.

2.3 A Categorization of Classes based on the
Evolution Matrix

We present here a categorization of classes based on the evolu-
tion matrix, i.e., based on the visualization of different versions of
aclass. The categorization stemsfrom the experienceswe obtained
while applying our approach on several casestudies. A large part,
but not all, of the vocabulary used here is taken out of the domain
of astronomy. We do so because we have found that some of the
names from this domain convey extremely well the described types
of evolution. This vocabulary is of utmost importance because a
complex context and situations, like the evolution of a class, can
be communicated to another person in an efficient way. Thisidea
comes from the domain of patterns[7].

During our case studies we have encountered several ways in
which a class can evolve over its lifetime. We list here the most
prominent types. Note that the categories introduced here are not
mutually exclusive, i.e. aclasscan behavelike apulsar for acertain
part of itslife and then becomeawhite dwarf for therest of itslife.

e Pulsar. A pulsar class grows and shrinks repeatedly during
itslifetime, asweseein Figure 5. The growth phasesare due
to additions of functionality, while the shrinking phases are
most probably due to refactorings and restructurings of the
class. Note that a refactoring may also make a class grow,
for example when along method is broken down into many
shorter methods. Pulsar classes can be seen as hotspots in
the system: for every new version of the system changeson
apulsar classmust be performed.

0| <

>|0)=|c

TIME

Figure 5: The Visualization of a Pulsar class.

e Supernova. A supernovaisaclasswhich suddenly explodes
in size. The reasonsfor such an explosive growth may vary,
although we have already made out some common cases:

— Major refactorings of the system which have caused a
massive shift of functionality towards a class.

— Dataholder classeswhich mainly defineattributes whose
values can be accessed. Due to the simple structure of
suchclassesit iseasy to make such aclassgrow rapidly.

— So-called sleeper classes. A class which has been de-
fined a long time ago but is waiting to be filled with
functionality. Once the moment comes the developers
may already be certain about the functionality to bein-
troduced and do so in a short time.

Supernova classes should be examined closer astheir accel-
erated growth rate may be a sign of unclean design or intro-
duce new bugsinto the system.
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Figure 4: The Evolution Matrix of MooseFinder.
— Dead code. The class may have become obsolete at a
O O O = certain point in time, but was not removed for varying
reasons.

TIME

Figure 6: The Visualization of a Supernova class.

e White Dwarf. A white dwarf is a class who used to be of
acertain size, but dueto varying reasonslost the functional-
ity it defined to other classes and now trundles along in the
system without areal meaning. We can see a schematic dis-
play of awhite dwarf classin Figure 7. White dwarf classes
should be examined for signs of dead code, i.e. they may be
obsolete and therefore be removed.
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Figure 7: The Visualization of a White Dwarf class.

¢ Red Giant. A red giant classcan be seen asapermanent god
class[15], which over several versions keeps on being very
large. God classestend to implement too much functionality
and are quite difficult to refactor, for example using a split
classrefactoring [6].

e Stagnant. A stagnant class is one which does not change
over several versionsof the software systemit belongsto. We
list here afew reasonswhich may lead to a stagnant class:

— Good design. Stagnant classes can have a good im-
plementation or a simple structure which makes them
resistant to changes affecting the system.

— The class belongs to a subsystem on which nowork is
being performed.

Dayfly. A dayfly class has avery short lifetime, i.e., it often
exists only during one version of the system. Such classes
may have been created to try out an idea which was then
dropped.

e Persistent. A persistent class has the same lifespan as the
whole system. It has been there from the beginning and is
therefore part of the original design. Persistent classesshould
be examined, as they may represent cases of dead code that
no devel oper daresto remove asthereis no one being ableto
explain the purpose of that class.

3. CASE STUDIES

In this section we present some case studies whose evolution we
have visualized using the evolution matrix view. We shortly intro-
duce each case study, and then show and discuss their evolution
matrix.

3.1 MooseFinder

MooseFinder [17] is an average sized application written in Vi-
sualWorks Smalltalk by one developer in little more than one year
as part of adiploma. We have taken 38 versions of the software as
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Figure 8: The Evolution Matrix of Sherlock.

acase study.

Discussion. In Figure 4 we can see the evolution matrix of
MooseFinder. We see that the first version on the left has a small
number of classesand that of those only few survived until the last
version, i.e., are persistent classes. We can also see there have been
two major leaps and one long phase of stagnation. Note that the
second leap is in fact a case of massive class renaming: many
classes have been removed in the previous version and appear as
added classes in the next version. There is also a version with a
few dayfly classes. The classes themselves rarely changein size
except the class annotated as arenamed pulsar class, which at first
sight seemsto be one of the central classesin the system.

3.2 Supremo

Supremo [12] isalso written in VisuaWorks Smalltalk. We have
taken 21 versions of this application as a case study.

Discussion. In Figure 8 we seethe evolution matrix of Supremo.
We can see that there is apart from a stagnation phase a constant
growth of the system with three major growth phases. Note that the
last growth phase is due to a massive renaming of classes. There
are several pulsar classeswhich strike the eye, some of which have

considerable size. We can aso see that from the original classes
only two are persistent, i.e. the whole system renewed itself nearly
completely.

4. CODECRAWLER AND MOOSE

CodeCrawler is the tool used to generate the views presented in
this paper. CodeCrawler supports reverse engineering through the
combination of metrics and software visualization [13, 2, 4]. Its
power and flexibility, based on simplicity and scalahility, has been
repeatedly proven in several large scaleindustrial case studies.

CodeCrawler is implemented on top of Moose. Mooseis alan-
guageindependent reengineering environment written in Smalltalk.
It isbased on the FAMIX metamodel [3], which providesfor alan-
guage independent representation of object-oriented sources and
contains the required information for the reengineering tasks per-
formed by our toals. It is languageindependent, because we need
to work with legacy systems written in different implementation
languages. It is extensible, sincewe cannot know in advanceall in-
formation that is needed in future tools, and since for some reengi-
neering problems tools might need to work with language-specific
information, we alow for language plug-ins that extend the model
with language-specific features. Next to that, we alow tool plug-
insto extend aswell the model with tool-specific information.
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Figure 9: A simplified view of the FAMIX metamodel.

A simplified view of the FAMIX metamodel comprisesthe main
object-oriented concepts- namely Class, Method, Attribute and In-
heritance - plus the necessary associations between them - namely
Invocation and Access (see Figure 9).

Moose can be used in the context of evolution asit alows several
modelsto beloaded at the sametime. If weload modelsof different
versions of the same software we get a sequenceof snapshotsof the
evolution of the software. In this paper we use this technique as a
base for the evolution matrix visualization.

5. CONCLUSION

In this paper we have presented the evolution matrix, a novel
way to visualize the evolution of classesin object oriented software
systems. The evolution matrix can greatly reduce the amount of
data one hasto deal with when analyzing the evolution of software
using a simple visualization approach. Based on the visualizations
obtained we have introduced a categorization of classes based on
their personal evolution. We have applied the evolution matrix on
some case studiesto verify the usefulnessof this approach.

5.1 Limits of the Approach
The approach presented hereis limited in the following ways:

e The effectiveness depends on the number of available ver-
sionsof asoftware (the morethe better), aswell asthe amount
of changes between one version and the next: as our ap-
proach aims mostly at the differences between two versions,
in the case of two versions which are too distant from each
other in terms of changesmany details get lost.

e A major aspect of classesin object-oriented programming is
their capability to inherit from each other: a class seldom
exists on its own, but is often embedded in the context of its
inheritance hierarchy. This aspect goes lost with the current
evolution matrix visualization.

e Theapproach is not immune to name changes. If aclass has
been renamed at a certain point in time, it will be treated as
a class which has been removed and a new class which has
been added.

o Software visualization techniquesmust deal with theissue of
scalability. In the case of the evolution matrix the approach
hasworked for systemsof nearly 100 classes. For larger sys-
tems we end up with a very large matrix where mainly gen-
eral statements about the system’s evolution can be made,
rather than precise statements about particular classes.

5.2 Related Work

Among the various approachesto understand software evolution
that have been proposed in the literature, graphical representations
of software have long been accepted as comprehensionaids.

Holt and Pak [10] present a visualization tool called GASE to
elucidate the architectural changes between different versions of a
system.

Rayside et a. [14] have built atool called JPort for exploring
evol ution between successive versions of the JDK. Their intent was
to provide atool for detecting possible problem areas when devel -
operswish to port their Javatools across versions of the JDK.

In [11, 16] Claudio Riva presents work which has similarities,
i.e. he also visualizes several versions of software (at subsystem
level) using colors. Through the obtained colored displaysthey can
make conclusions about the evolution of a system. Their approach
differs as they do not have actual software artifacts but only in-
formation about software releases. This implies that they cannot
verify the correctness of their informations. Our approach allows
usto enrich the display using metrics information aswell as being
able to accessevery version of the software artifacts.

Burd and Munro have been analyzing the calling structure of
source code [1]. They transformed calling structures into a graph
using dominance relations to indicate call dependencies between
functions. Dominancetreeswere derived from call-directed-acyclic-
graphs [1]. The dominance trees show the complexity of the re-
Iationships between functions and potential ripple effects through
change propagation.

Gall and Jazayeri examined the structure of alarge telecommu-
nication switching system with asize of about 10 MLOC over sev-
eral releases [9]. The analysis was based on information stored
in a database of product releases, the underlying code was neither
available nor considered. They investigated first in measuring the
size of components, their growth and change rates. The aim was
to find conspicuous changes in the gathered size metrics and to
identify candidate subsystemsfor restructuring and reengineering.
A second effort on the same system focused on identifying logi-
cal coupling among subsystemsin a way that potential structural
shortcomings could be identified and examined [8].

Most publications and tools that tackle the problem of software
evolution using software visualization work at higher abstraction
levels, i.e. systems, subsystems, etc. We provide avisualization of
classesas well as a categorization of classesbased on that.

5.3 Future Work

In the future we plan to apply the evolution matrix approach on
large industrial case studies to evaluate its usefulness and scal abil-
ity. One of the mgjor problemswhich weforesee isthe availability
of several versions of an industrial system.

We also plan to extend and enrich the evolution matrix to in-
creaseitsusability. At thistimethe classesare treated as standalone
objects. We think the introduction of relationships between classes,
especially inheritance, will increase its usefulness.

The use of other metrics remains also to be explored. Prelimi-
nary uses of difference metrics haveyielded interesting results, and
we plan to further explore this direction.

To tackle the problem of scalability we will introduce grouping
techniques to reduce the number of displayed entities. We also
plan to examine very large systemsby visualizing higher level con-
structs like subsystemsand applicationsinstead of classes.
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