
Dr. Radu Marinescu !1

Quality Assurance and Software Evolution

Dr. Radu Marinescu !2

Course outline

1. Software Evolution and Reengineering
2. Model Capture and Design Extraction
3. Object-Oriented Harmony ... and Its Disharmonies
4. Detecting Disharmonies
5. Refactoring and Restructuring
6. Defect and Change Prediction

Dr. Radu Marinescu !3

Textbooks

Dr. Radu Marinescu !4

1. Introduction
! Goals
! Terminology
! Why Reengineering ?

!Object-Oriented Legacy
!Lehman's Laws

! Typical Problems
!common symptoms
!architectural problems & refactorings opportunities

! Reverse and Reengineering
!Techniques
!Patterns

Dr. Radu Marinescu !5

Goals of this course
We will try to convince you:

! There are object-oriented legacy systems too!

! Reverse engineering and reengineering are essential activities in the
lifecycle of any successful software system.

!And especially OO ones!

! There is a large set of lightweight tools and techniques to help you with
the quality assessment and the evolution of your software.

! Despite these tools and techniques, people must do the job and they
represent the most valuable resource.

Dr. Radu Marinescu !6

What is a Legacy System ?
legacy

 A sum of money, or a specified article, given to another by will;
anything handed down by an ancestor or predecessor. — Oxford
English Dictionary

⇒ so, further evolution and development may be prohibitively expensive

A legacy system is a piece of
software that:

• you have inherited, and
• is valuable to you.

Typical problems with legacy systems
are:

• original developers no longer available
• outdated development methods used
• extensive patches and modifications
• missing or outdated documentation

Dr. Radu Marinescu !7

Software Maintenance - Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance

Effort
Between 50% and 75%

of global effort is spent
on maintenance !

Relative Cost
of Fixing Mistakes

Solution ?
• Better requirements engineering
• Better software methods & tools  

(database schemas, CASE-tools, objects,
components, …)

Dr. Radu Marinescu !8

Requirements Engineering ?

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
⇒ even with better requirements, it is hard to predict new functions

4.1% Other

Dr. Radu Marinescu !9

Lehman's Laws
A classic study by Lehman and Belady [Lehm85a] identified several

“laws” of system change.

Continuous Change
! A program that is used in a real-world environment must

change, or become progressively less useful in that environment.

Increasing complexity
! As a program evolves, it becomes more complex, and extra

resources are needed to preserve and simplify its structure.

These laws are still applicable…

Dr. Radu Marinescu !10

⇒ they do not come for free

What about Objects ?
Object-oriented legacy systems

! = successful OO systems whose architecture and design no longer
responds to changing requirements

Compared to traditional legacy systems
! The symptoms and the source of the problems are the same

!ravioli code instead of spaghetti code ;)
! The technical details and solutions may differ

OO techniques promise better
! flexibility,
! reusability,
! maintainability
! …

Dr. Radu Marinescu !11

What about Components ?

Components are very "fragile" …
After a while one inevitably resorts to glue :)

Dr. Radu Marinescu !12

How to deal with Legacy ?

New or changing requirements will gradually degrade original design
… unless extra development effort is spent to adapt the structure

New Functionality

Hack it in?

• duplicated code
• complex conditionals
• abusive inheritance
• large classes/methods

First …
• refactor
• restructure
• reengineer

Take a loan on your software
⇒ pay back via reengineering

Investment for the future
⇒ paid back during maintenance

Y N

When, due to constraints,
I design quickly and dirty,
my project is loaded with

technical debt.
Cunningham, 1992

Dr. Radu Marinescu !14

Common Symptoms
Lack of Knowledge

! obsolete or no documentation
! departure of the original

developers or users
! disappearance of inside

knowledge about the system
! limited understanding of entire

system
! missing tests

Process symptoms
! too long to turn things over to

production
! simple changes take too long

! need for constant bug fixes
! maintenance dependencies
! difficulties separating products

Code symptoms
• big build times
• duplicated code
• code smells

Dr. Radu Marinescu !15

Common Problems

Architectural Problems
! insufficient documentation

!non-existent or out-of-date
! improper layering

!too few are too many layers
! lack of modularity

!strong coupling
! duplicated functionality

!similar functionality by
separate teams

Refactoring opportunities
! misuse of inheritance

! code reuse vs
polymorphism

! missing inheritance
! duplication, case-

statements
! misplaced operations

! operations outside classes
! violation of encapsulation

! type-casting; C++
"friends"

! class abuse
! classes as namespaces

! duplicated code
! copy, paste & edit code

Engine

ElectricEngineFuelEngine

Vehicle

BusCar

AutoDriverCarHumanDriverCar AutoDriverBusHumanDriverBus

Engine

ElectricEngineFuelEngine

Vehicle

BusCar

AutoDriverCarHumanDriverCar AutoDriverBusHumanDriverBus

Scooter

AutoDriverScooterHumanDriverScooter

Engine

ElectricEngineFuelEngine

Vehicle

BusCar Scooter

Driver

HumanDriver AutoDriver

Favor object composition over class inheritance!

Dr. Radu Marinescu !19

Some Terminology
“Forward Engineering is the traditional process of moving from high-level
 abstractions and logical, implementation-independent designs to the physical
 implementation of a system.”

“Reverse Engineering is the process of analyzing a subject system to identify the
system’s components and their interrelationships and create representations of
the system in another form or at a higher level of abstraction.”

“Reengineering ... is the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new
form.”

 — Chikofsky and Cross [in Arnold, 1993]

Dr. Radu Marinescu !20

Goals of Software Evolution (reengineering)

! Unbundling
!split a monolithic system into parts that can be separately marketed

! Performance
! “first do it, then do it right, then do it fast”

"experience shows this is the right sequence!

! Design refinement
!to improve maintainability, portability, etc.

! Port to other Platform
!the architecture must distinguish the platform dependent modules

! Exploitation of New Technology
!i.e., new language features, standards, libraries, etc.

Dr. Radu Marinescu !21

The Reengineering (Evolution) Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

• people centric
• lightweight

Dr. Radu Marinescu !22

Sample Projects

55,000

60,000

180,000

350,000

2,000,000

pipeline planning

user interface

embedded switching

mail sorting

network management unbundle application

portability & scalability

improve modularity

increase flexibility

extract design

FAMOOS Case studies

LOCDomain Reengineering Goal

Different goals … but common themes and problems !

Dr. Radu Marinescu !23

Summary

! Software “maintenance” is really continuous development

! Object-oriented software also suffers from legacy symptoms

! Reengineering goals differ; symptoms don’t

! Common, lightweight techniques can be applied to keep
software healthy

