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Quality Assurance and Software Evolution
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Course outline

1. Software Evolution and Reengineering 
2. Model Capture and Design Extraction 
3. Object-Oriented Harmony ... and Its Disharmonies 
4. Detecting Disharmonies 
5. Refactoring and Restructuring 
6. Defect and Change Prediction
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Textbooks
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1. Introduction
! Goals 
! Terminology 
! Why Reengineering ? 

!Object-Oriented Legacy 
!Lehman's Laws 

! Typical Problems 
!common symptoms 
!architectural problems & refactorings opportunities 

! Reverse and Reengineering 
!Techniques 
!Patterns
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Goals of this course
We will try to convince you: 

! There are object-oriented legacy systems too! 

! Reverse engineering and reengineering are essential activities in the 
lifecycle of any successful software system.  

!And especially OO ones! 

! There is a large set of lightweight tools and techniques to help you with 
the quality assessment and the evolution of your software. 

! Despite these tools and techniques, people must do the job and they 
represent the most valuable resource.
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What is a Legacy System ?
legacy 

 A sum of money, or a specified article, given to another by will; 
anything handed down by an ancestor or predecessor. — Oxford 
English Dictionary

⇒ so, further evolution and development may be prohibitively expensive

A legacy system is a piece of 
software that: 

• you have inherited, and 
• is valuable to you.  

Typical problems with legacy systems 
are: 

• original developers no longer available 
• outdated development methods used 
• extensive patches and modifications  
• missing or outdated documentation
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Software Maintenance - Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance 

Effort 
Between 50% and 75% 

of global effort is spent 
on maintenance !

Relative Cost 
of Fixing Mistakes

Solution ? 
• Better requirements engineering 
• Better software methods & tools  

(database schemas, CASE-tools, objects, 
components, …)
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Requirements Engineering ?

17.4% Corrective 
(fixing reported errors)

18.2% Adaptive 
(new platforms or OS)

60.3% Perfective 
(new functionality)

The bulk of the maintenance cost is due to new functionality 
⇒ even with better requirements, it is hard to predict new functions

4.1% Other
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Lehman's Laws
A classic study by Lehman and Belady [Lehm85a] identified several 

“laws” of system change. 

Continuous Change 
! A program that is used in a real-world environment must 

change, or become progressively less useful in that environment. 

Increasing complexity 
! As a program evolves, it becomes more complex, and extra 

resources are needed to preserve and simplify its structure.

These laws are still applicable…
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⇒ they do not come for free

What about Objects ?
Object-oriented legacy systems 

! = successful OO systems whose architecture and design no longer 
responds to changing requirements 

Compared to traditional legacy systems 
! The symptoms and the source of the problems are the same 

!ravioli code instead of spaghetti code ;) 
! The technical details and solutions may differ 

OO techniques promise better 
! flexibility,  
! reusability,  
! maintainability 
! …
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What about Components ?

 
Components are very "fragile" … 
After a while one inevitably resorts to glue :)
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How to deal with Legacy ?

New or changing requirements will gradually degrade original design 
… unless extra development effort is spent to adapt the structure

New Functionality

Hack it in?

• duplicated code 
• complex conditionals 
• abusive inheritance 
• large classes/methods

First … 
• refactor 
• restructure 
• reengineer

Take a loan on your software 
⇒ pay back via reengineering

Investment for the future 
⇒ paid back during maintenance

Y N



When, due to constraints,  
I design quickly and dirty,  
my project is loaded with  

technical debt.
Cunningham, 1992
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Common Symptoms
Lack of Knowledge 

! obsolete or no documentation 
! departure of the original 

developers or users 
! disappearance of inside 

knowledge about the system 
! limited understanding of entire 

system 
! missing tests

Process symptoms 
! too long to turn things over to 

production 
! simple changes take too long 

! need for constant bug fixes 
! maintenance dependencies 
! difficulties separating products

Code symptoms 
• big build times 
• duplicated code 
• code smells
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Common Problems

Architectural Problems 
! insufficient documentation 

!non-existent or out-of-date 
! improper layering 

!too few are too many layers 
! lack of modularity 

!strong coupling 
! duplicated functionality 

!similar functionality by 
separate teams

Refactoring opportunities 
! misuse of inheritance 

! code reuse vs 
polymorphism 

! missing inheritance 
! duplication, case-

statements 
! misplaced operations 

! operations outside classes 
! violation of encapsulation 

! type-casting; C++ 
"friends" 

! class abuse 
! classes as namespaces 

! duplicated code 
! copy, paste & edit code

Engine

ElectricEngineFuelEngine

Vehicle

BusCar

AutoDriverCarHumanDriverCar AutoDriverBusHumanDriverBus



Engine

ElectricEngineFuelEngine

Vehicle

BusCar

AutoDriverCarHumanDriverCar AutoDriverBusHumanDriverBus

Scooter

AutoDriverScooterHumanDriverScooter

Engine

ElectricEngineFuelEngine

Vehicle

BusCar Scooter

Driver

HumanDriver AutoDriver

Favor object composition over class inheritance!
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Some Terminology
“Forward Engineering is the traditional process of moving from high-level  
 abstractions and logical, implementation-independent designs to the physical 
 implementation of a system.” 

“Reverse Engineering is the process of analyzing a subject system to identify the  
system’s components and their interrelationships and create representations of 
the system in another form or at a higher level of abstraction.” 

“Reengineering ... is the examination and alteration of a subject system to  
reconstitute it in a new form and the subsequent implementation of the new  
form.” 

 — Chikofsky and Cross [in Arnold, 1993]
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Goals of Software Evolution (reengineering)

! Unbundling 
!split a monolithic system into parts that can be separately marketed 

! Performance 
! “first do it, then do it right, then do it fast”  

"experience shows this is the right sequence! 

! Design refinement 
!to improve maintainability, portability, etc. 

! Port to other Platform 
!the architecture must distinguish the platform dependent modules 

! Exploitation of New Technology 
!i.e., new language features, standards, libraries, etc.
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The Reengineering (Evolution) Life-Cycle

Requirements

Designs

Code

(0) requirement 
analysis

(1) model 
capture

(2) problem 
detection (3) problem 

resolution

(4) program transformation

• people centric 
• lightweight
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Sample Projects

55,000

60,000

180,000

350,000

2,000,000

pipeline planning

user interface

embedded switching

mail sorting

network management unbundle application

portability & scalability

improve modularity

increase flexibility

extract design

FAMOOS Case studies

LOCDomain Reengineering Goal

Different goals … but common themes and problems !
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Summary

! Software “maintenance” is really continuous development 

! Object-oriented software also suffers from legacy symptoms 

! Reengineering goals differ; symptoms don’t 

! Common, lightweight techniques can be applied to keep 
software healthy


