
V20140514

Software Engineering Fundamentals

Dr. Petru Florin Mihancea

Software Testing

Based on:
I. Sommerville - Software Engineering 8, Ch. 4 - Software Processes,
Ch. 23 - Software Testing
R. Pressman - Software Engineering 5th Ed. Ch.17 - Software Testing
Techniques, Ch.18 - Software Testing Strategies

1
Dr. Petru Florin Mihancea

Two perspectives

Validation
Trying to ensure that the built software conforms to
the user real needs

Validation/acceptance testing
 a successful test shows that the system operates as intended

Are we building the right product ?

Verification (do not confuse with formal verification)

Trying to ensure that the built software correctly
implements a specific function

Defect testing
 a successful test is one that exposes a defect that causes the

 system to perform incorrectly

Are we building the product right ?

2

Dr. Petru Florin Mihancea

Testing “Limitation”

Testing can only show the presence of errors, not
their absence E.Dijkstra

Exhaustive testing, where every possible
program execution sequence is tested is
impossible

3
Dr. Petru Florin Mihancea

Testing Phases

System testing
Component

 testing
Acceptance

testing

Sommerville - Software Engineering

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Sommerville - Software Engineering

Component/Unit Testing
- components are functions, object

classes, or small coherent groupings of
these elements and are tested in isolation

- programmers make use of their own
data and incrementally test their own

code during development

4

Dr. Petru Florin Mihancea

Testing Phases

System testing
Component

 testing
Acceptance

testing

Sommerville - Software Engineering

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Sommerville - Software Engineering

Integration Testing
- finding defects due to unanticipated
interactions between components,

interfacing problems, etc.
- verifying that system/sub-systems meet

their functional requirements expected by
the developers

- performed by an independent team
(especially in the last integration steps)

4
Dr. Petru Florin Mihancea

Testing Phases

System testing
Component

 testing
Acceptance

testing

Sommerville - Software Engineering

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Sommerville - Software Engineering

Validation/Acceptance Testing
- entire system testing with data provided

by the customers

4

Dr. Petru Florin Mihancea

Testing Phases

System testing
Component

 testing
Acceptance

testing

Sommerville - Software Engineering

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Sommerville - Software EngineeringIn incremental development each increment is

tested as developed; in XP tests are
 created even

before development starts

4
Dr. Petru Florin Mihancea

Generic Model for Testing Process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

Sommerville - Software Engineering

Specification of the inputs, the concrete
expected result and a statement of what is

being tested

Concrete inputs for a test case;
sometimes they can be produced

automatically
(but not the entire test case)

5

Dr. Petru Florin Mihancea

When have we completed testing ?

NO precise answer

 “you’re never done testing, the burden simply shifts from you to

 your customer” i.e. every time the user executes a program, it is

 being tested

 “you’re done testing when you run out of time/money”

 statistical models can be used to predict total testing time

 required to achieve a particular low failure intensity

6
Dr. Petru Florin Mihancea

1
Approaching Software Testing

7

Dr. Petru Florin Mihancea

A Unit Testing

Pressman - Software Engineering

isolated module/
component

8
Dr. Petru Florin Mihancea

Unit Testing Procedure

Pressman - Software Engineering

a “main program” accepting test case data,
passes the data to the component

and prints the results

a “dummy subprogram” replacing a module
that is subordinate (called by) the tested

component (simulates in a simplified
manner the subordinate component)

studs & drivers represent overhead:
must be written for testing but will

not be included in the working
product

9

Dr. Petru Florin Mihancea

B Integration Testing

If all components work individually, why do we
doubt that they’ll work together ?

Interfacing problems
 data lost across an interface
 adverse effect by a module on another one
 accepted individual sub-functions may not provide
 the desired combined major function

Major approaches
 Big-Bang integration
 Incremental integration

10
Dr. Petru Florin Mihancea

“Big-Bang” Integration Testing

All components are integrated in advance
and the entire program is tested as a whole

Major Disadvantage
Chaos
 very difficult to isolate causes due to the vast
 expanse of the entire program
 when some errors are solved, other errors occur
 and the process looks like an endless loop

11

Dr. Petru Florin Mihancea

Incremental Integration Testing

The program is constructed and tested in
small increments

Advantages
errors are easier to isolate
interfaces are more likely to be tested completely

Two integration approaches
Top-Down
Bottom-Up

12
Dr. Petru Florin Mihancea

Top-Down

Pressman - Software Engineering

Depth-First: incrementally integrates all components on a major control path
Breadth-First: incrementally integrates all components directly subordinate

Modules are integrated by moving
downwards through the control

hierarchy starting from the main
control module

Submodules are successively integrated
in a depth-first or breadth-first manner

13

Dr. Petru Florin Mihancea

Top-Down

Pressman - Software Engineering

1. The main module is used as a test driver and stubs are
substituted for all components directly subordinate

2. Subordinate studs are replace one at a time with the real
component (in a depth/breath first manner)

3. As each component is integrated, tests are conducted

4. On completion if each set of tests, another component is integrated

5. Regression testing may be applied to ensure that no new errors have been
introduced

14
Dr. Petru Florin Mihancea

Top-Down Pros & Cons

Pros
Checks major control points early in the testing process
In the depth-first way, a complete function can be tested
giving confidence

Cons
Stubs are needed for both not built/untested components
In practice, proper testing of high level modules may
require complicated processing from the low level
modules - alternatives:
 the tester may wait until she can replace the stub with the real
 module (tends to violate the idea of top-down integration)
 the tester may create a more complex stub (with significant overhead)

15

Dr. Petru Florin Mihancea

Bottom-Up

Pressman - Software Engineering

Starts with atomic modules in
the program structure

1. Low-level components are combined into clusters that perform a specific
subfunction
2. A driver is written to coordinate test case inputs and outputs
3. The cluster is tested
4. Drivers are removed and clusters are combined moving upwards in the
program structure

16
Dr. Petru Florin Mihancea

Bottom-Up Pros & Cons

Pros
Checks low-level data processing early in the testing
process
No need for stubs

Cons
Drivers are needed to test lower-level modules
More testing is required later when the upper-level
modules are available because the drivers are incomplete

Hybrid approaches are possible: some high-level

modules are integrated top-down while low-level

modules are integrated bottom-up

17

Dr. Petru Florin Mihancea

Smoke Testing

An integration testing approach

a pacing mechanism for time-critical projects

the team can assess the project on a regular basis

1. Coded components are integrated into a “build”

2. Tests are designed to expose problems with the
highest likelihood of throwing the project behind the
schedule

3. The build is integrated with other builds (top-down or
bottom-up) and it is smoke tested daily

http://www.grokdotcom.com

18
Dr. Petru Florin Mihancea

Benefits of Smoke Testing

Integration risk is minimized
 incompatibilities and blocking errors may be uncovered earlier in the
 integration testing process

Error diagnosis and correction is simplified
 the “new increment” added to the build is probably responsible for
 a new error

Progress is easier to assess
 each day more code is integrated and more has been demonstrated to
 work

19

Dr. Petru Florin Mihancea

C Validation Testing

Acceptance testing - for custom software

 Acceptance tests conducted by the customer/end-user to validate all
 requirements
 Important to establish with the customer formal validation criteria during
 requirements engineering

Alpha & Beta testing - software for open market
 Alpha testing
 done in the presence of developer at her site
 Beta testing
 potential customers are selected to use the product in their environment

 and problems (real or imagined) are reported to the developers at regular
 intervals

Are we building the right product ?

20
Dr. Petru Florin Mihancea

D Regression Testing

Regression testing means the re-execution of some
tests that have already been conducted to ensure
that changes have not propagated unintended side

effects

Adding/changing a module changes
the software ...

These changes may cause problems with
functions that previously worked fine :(

A regression test suite should contain:
 A sample of tests that will exercise all software functions
 Tests focusing functions that are likely to be affected by the change
 Tests that focus the changed component

Especially in an integration context, re-executing

all the tests can easily become impractical

21

Dr. Petru Florin Mihancea

2
Test Case Design

Objective - design tests that have the highest

likelihood of finding the most errors with a

minimum amount of time and effort; thus we

need a systematic approach

22
Dr. Petru Florin Mihancea

Categories

Black-Box Entity
In Out

White-Box
(glass-box)

Entity
In Out

In practice, usually for unit-testing

and some integration testing

In practice, usually for validation and

integration testing

23

Dr. Petru Florin Mihancea

Reasons for White-Box Testing

Logic errors and incorrect assumptions are inversely
proportional to the probability that a path will be executed

We often believe that a logical path in not likely to be
executed when, in fact, it may be executed on a regular basis

Typographical errors are random and thus, it is likely that
untested (obscure) paths will contain some

24
Dr. Petru Florin Mihancea

A (Basis) Path Testing
White-Box Category

1. Identify a set of linearly independent paths

2. Write the corresponding test case to exercise each of
these paths

Based on the notions of flow graphs, cyclomatic

complexity and independent path

ensures that each statement has been executed at least one
time and each conditional statement is exercised

for both true and false

25

Dr. Petru Florin Mihancea

Flow Graph

Sommerville - Software Engineering

1

2

3

4

5 6 7 8

9

10

11

12 13

14

Exit node
26

Dr. Petru Florin Mihancea

Flow Graph

Sommerville - Software Engineering

6,7 8,9,10

11

12 13

1,2,3,4

14

5

27

Dr. Petru Florin Mihancea

Cyclomatic Complexity

Sommerville - Software Engineering

V(G) = E - N + 2
E - number of edges
N - number of nodes

6,7 8,9,10

11

12 13

1,2,3,4

14

5

28
Dr. Petru Florin Mihancea

Cyclomatic Complexity

Sommerville - Software Engineering

Another way to compute the metric:
the number of simple branching conditions + 1

For compound conditions
(short-circuiting and, or, etc.) you must count
each simple condition

1,2:if(a || b) {
3: ...
 } else {
4: ...
 }
5:

3

1
a?

2
b?

5

4

29

Dr. Petru Florin Mihancea

The Basis Set

Sommerville - Software Engineering

Cyclomatic complexity indicates the
number of independent paths in the

basis set

An independent path is any path
that introduces at least one new
processing statement or a new

condition (in graph, an independent
path must move along at least one
edge that has not been traversed

before that path was defined)

6,7 8,9,10

11

12 13

1,2,3,4

14

5

1) 1,2,3,4,5,14
2) 1,2,3,4,5,6,7,8,9,10,14
3) 1,2,3,4,5,6,7,11,12,5, ...
4) 1,2,3,4,5,6,7,11,13,5, ...

Finally, we have to derive
test cases for each of

these paths

30
Dr. Petru Florin Mihancea

B Loop Testing
White-Box Category

Simple loops

Write test cases to:

1. Skip the loop
2. One pass through the loop
3. Two passes through the loop
4. M passes where M < N
5. N-1, N, N+1 (forcing) passes

N - maximum number of allowable
passes

31

Dr. Petru Florin Mihancea

Loop Testing
White-Box Category

Nested loops

1. Simple loop testing for innermost
loop keeping the outer loops at their
minimum iteration parameter

2. Move out one loop to apply first step
for it; keep the inner loops at their
typical value for their iterations

Repeat until the outermost loop has
been tested

Concatenated loops

If independent, separately test each
one as for simple loops

Otherwise, apply a similar approach as
for nested loops

32
Dr. Petru Florin Mihancea

C Equivalence Partitioning
Black-Box Category

Divides the input domain of the tested
entity into classes (partitions) of
equivalent data

Entity

Input domainInput domain

33

Dr. Petru Florin Mihancea

C Equivalence Partitioning
Black-Box Category

Divides the input domain of the tested
entity into classes (partitions) of
equivalent data

Entity

Input domainInput domain

A partition
An invalid
partition

Rationale - an entity should behave in
the same way for all members of a
partition

Division is based on evaluating input
conditions (for each input data):

a. If an input condition specifies a range,
we have one valid and two invalid
patitions

b. If it requires a specific numerical
value, we have one valid and two invalid
partitions

c. If it requires a member from a set, we
have one valid and one invalid classes

etc.
33

Dr. Petru Florin Mihancea

Equivalence Partitioning
Black-Box Category

Example
The entity accepts 4 to 8 values that are five
digit integers greater (or equal) to 10 000

Less than 4 values 4 to 8 values More than 8 values

Smaller than 10 000 A value from 10 000 to
99 999

Greater than
99 999

34

Dr. Petru Florin Mihancea

Equivalence Partitioning
Black-Box Category

Producing test cases
a. Write a distinct test case for each invalid partition
b. Write as many test cases as necessary to cover all the
valid partitions (try to cover as many valid partitions as possible in a
test case)

Less than 4 values 4 to 8 values More than 8 values

Smaller than 10 000 A value from 10 000 to
99 999

Greater than
99 999

Example

T1: 10001,10002 T2: 10001,10002, 10003, 10004, 10005,
10006, 10007, 10008, 10009

T3: 1, 2, 3, 4, 5 T4: 100000, 200000, 300000, 400000

T5: 20001, 20002, 20003,
20004, 20005

35
Dr. Petru Florin Mihancea

D Boundary Value Analysis
Black-Box Category

Errors tend to occur at the boundaries
of the input domain thus, write test
cases that exercise bounding values

Complements equivalence partitioning

1. If an input condition specify a range bounded by a and b, test cases should
be designed with values a and b and just above and just below a and b

2. If a number of values is specified, test cases should be developed that
exercise the minimum and maximum numbers. Just above and bellow
minimum and maximum must also be tested

etc.

36

Dr. Petru Florin Mihancea

Boundary Value Analysis
Black-Box Category

For sequences (collections)

1. Test with sequences having zero and one
 element

2. Ensure in distinct tests that the first, the middle
 and the last elements are accessed

3. (More general guideline) Use different sequences with
 different lengths in different tests

37
Dr. Petru Florin Mihancea

Example I : Partitioning + Boundary Value Analysis

Less than 4 values 4 to 8 values More than 8 values

Smaller than 10 000 A value from 10 000 to
99 999

Greater than
99 999

3 4 8 9

6

9999 100000 10000 99999

50000

5 7

10001 99998

Choose tests cases from the boundaries and

close to the mid-points of the partitions

38

Dr. Petru Florin Mihancea

Example (II)
boolean search(Integer key, int [] tab)

Returns true when the key is found in tab;
otherwise it always returns false

key is found
in tab

key
is not found in

tab

key is null
(invalid class)

tab is null
(invalid class)

+

Sequence testing
guidelines

key tab result

null [3] FALSE

5 null FALSE

77 [] FALSE

7 [7] TRUE

0 [7] FALSE

17 [17,30,23,2] TRUE

35 [40,198,9,19,38,6,35] TRUE

23 [17,18,21,23,29,41,38] TRUE

285 [12,253,89,13,30] FALSE

39

