
V20140417

Software Engineering Fundamentals

Dr. Petru Florin Mihancea

Software Design

Based on:
I. Sommerville - Software Engineering 8, Ch. 4 Software Processes,
Ch. 11 - Architectural Design
R. Pressman - Software Engineering 5th Ed. Ch.14 - Architectural Design
B. Meyer – Object-Oriented Software Construction
A. Riel - Object-Oriented Design Heuristics
R. Martin - The Open/Closed Principle
A. Hunt, D. Thomas - Pragmatic Programmer

1
Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software Engineering

2

Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software Engineering

The sub-systems making up
the system and their relationships are

identified and documented

2
Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software Engineering

For each sub-system, an abstract
specification of its services is

prepared

2

Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software Engineering

For each sub-system, its
interface with other sub-systems is

designed and documented

2
Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software Engineering

Services are allocated to
components and the interfaces of these

components are designed

2

Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software Engineering

The data structures and
algorithms used to provide the services

are designed and specified

2
Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software EngineeringIncreasingly detailed descriptions of
how the system is going to be realized

2

Dr. Petru Florin Mihancea

Software Design

A software design is a description of the
structure of the software to be implemented, the
data which is part of the system, the interfaces
between system components and, sometimes, the
algorithms to be used

Sommerville - Software Engineering

Sommerville - Software Engineering

In the case of agile methods, after the

architectural design, later stages of the

design are incremental. Moreover, each

increment is represented as program

code rather than a design model /

document

2
Dr. Petru Florin Mihancea

1
Architectural Design

3

Dr. Petru Florin Mihancea

Architectural Design

Large systems are always decomposed into sub-
systems that provide some related set of services;
architectural design is the process of identifying
these sub-systems, and establishing a framework
for sub-system control and communication

Sommerville - Software Engineering

Influenced by non-functional

requirements

4
Dr. Petru Florin Mihancea

How ?

Performance
few sub-systems, reduced communication

large-grained sub-systems

Security
layered organization with critical assets in the innermost layers

Availability
include redundant components so that to update/replace them without
stopping the system

Maintainability
fined-grained, self-contained components that may be readily changed

avoid shared data structures, separate data producers from consumers

5

Dr. Petru Florin Mihancea

Repository/Blackboard StyleA
Pressman - Software Engineering

All data in a system is managed in a
central repository that is accessible to all system components.

Components do not interact directly, only through the repository.

Repository - the data store is
passive, the sub-system being
responsible to access the
repository independently of
the activity of other sub-
systems / data changes

Blackboard - the data store
sends notifications to sub-
systems when data of interest
changed / becomes available

6
Dr. Petru Florin Mihancea

Pros vs. Cons

Pros
efficient to share large amounts of data

easy to add new sub-systems if they are compatible with the shared data
model

data producers are not concerned with how the data is used

centralized activities such as security, backup, recovery; sub-systems can
focus on their essential functions

Cons
sub-systems must agree on the repository data model; difficult to integrate
other sub-systems if their data models do not fit the agreed schema;
migrating to a new shared data model will be expensive;

all sub-systems must have the same backup, security, recovery policy

difficult to distribute the repository on different machines

7

Dr. Petru Florin Mihancea

Example: IDEs

Project
repository

Design
translator

Java
editor

UML
editors

Code
generators

Design
analyzer

Report
generator

Python
editor

Sommerville - Software Engineering

8
Dr. Petru Florin Mihancea

Client-Server StyleB
Inter-Network

ClientClient Client

Server Server

A set of servers offering
services to other sub-
systems e.g. file server
for file management
services

A set of clients accessing
the services offered by
servers; sub-systems in
their own right and we
might have several
instances of the same
sub-system running
concurrently

Has several variations

A network enabling
clients to access services;
not strictly necessary if
clients and servers are on
the same machine

9

Dr. Petru Florin Mihancea

Pros vs. Cons

Pros
distributed architecture

easy to add new servers and integrate it with the rest of the system

upgrade servers transparently

servers are not aware of clients (identity nor number)

servers have their own data model

Cons
changes in existing clients / servers may be required to really benefit of new
servers

performance problems if large amounts of data are exchanged (e.g., data
conversion from one representation to another)

special attention to denial of service attacks or server failures

10
Dr. Petru Florin Mihancea

Example: A Film/Photo Library

Catalog
server

Library
catalogue

Video
server

Film store

Picture
server

Photo store

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

Sommerville - Software Engineering

In this case, a simple user
interface based on HTML
(i.e., a web browser)

Links to data about the
films, etc.

Videos must be sent fast,
compressed, decompressed,
converted in different
formats, etc.

The actual web-server

11

Dr. Petru Florin Mihancea

Layered (aka. Abstract Machine) StyleC
Pressman - Software Engineering

Each layer is a sub-system similar to
a “machine” whose “language” is
represented by the services it
provides to the upper layer

This “language”/services is
implemented based on the “lower-
language”/lower-level-services
provided by the layer immediately
below (i.e., layer N uses only the
N-1 layer)

12
Dr. Petru Florin Mihancea

Pros vs. Cons
Pros
supports easily incremental development

changeable and portable

 as long as a layer does not modify its interface, a layer can be replaced by

 another equivalent layer

when a layer interface changes or new facilities are added only the adjacent
layer is affected

Cons
difficult to achieve such a structure

reduces performance because of increased communication through each
layer (thus, sometimes, a layer should communicate directly with an inner
layer and not via the intermediate layers between them)

a low-level service might be required at the level of each high-level layer
(thus, the same direct communication is considered)

13

Dr. Petru Florin Mihancea

Example: TCP/IP

Transport

Host-to-
Network

Internet

Physical medium

Transport

Host-to-
Network

Internet

Physical data transfer using some
protocol

Unreliably transfer datagrams
(pieces of data) from a host to
another host even if they are in

different types of networks

Reliably/Unreliably transfer data
from an application to another

application (e.g., identify
applications, error control, data

splitting and reconstruction, etc.)

Application ApplicationA client-server application

Have you noticed that different styles

can be used in combination ? :)

14
Dr. Petru Florin Mihancea

A More Concrete Pattern

Data Source

Business Logic

Presentation
Handle interactions
between the users and
the software (e.g., text
UI, graphical UI, etc.)

Communicating with
other systems that carry
out tasks for the
application (e.g., usually a
database)

The work the application
has to do (e.g.,
calculations, validations,
etc.)

Enterprise applications: manipulates & stores much
data to support the business of an organization (e.g.,
payroll, patient records, cost analysis, insurance
systems, etc.) M.Fowler - Patterns of Enterprise

Application Architecture

15

Dr. Petru Florin Mihancea

Pipes and Filters StyleD
Pressman - Software Engineering

This architecture is applied when input data are to be
transformed through a series of computational or

manipulative components (i.e., filters) into output data

When transformations
are sequential and in
batches

A pipe transfers data
from a filter output to a
filter input A filter is independent of

the previous and of the
following filter and
transforms input data
into output data

16
Dr. Petru Florin Mihancea

Pros vs. Cons

Pros
a particular filter can be reused

intuitive, since many people think of their work in terms of input output
processing

evolving the system by changing/adding new filters should be easy

easy to implement sequentially or concurrently

Cons
a filter must either agree with its communicating filters on the schema of
the data that is going to be transformed or a standard data format should be
imposed globally; the later is the only feasible approach in order to have
standalone, reusable filters

difficult for interactive systems due to the need of some stream of data to
be processed; simple textual in/out can be modeled in this way but for GUI
mouse clicks, menu selections, etc. is difficult

17

Dr. Petru Florin Mihancea

Example: UNIX Shell

ls -l | grep '^d' | wc -l

Pipes

Filters

Writes in the pipe a line
(with detailed information) for each

entry in the current folder

Reads each line from the incoming pipe
and writes in the outgoing pipe only the
lines starting with ‘d’ (from directory)

Counts and prints at stdout
the number of lines received from the

incoming pipe

18
Dr. Petru Florin Mihancea

2
Modular Decomposition

19

Dr. Petru Florin Mihancea

Modular Decomposition

After an overall system organization has been
chosen, you need to make a decision on the
approach to be use to decompose sub-systems
into modules Sommerville - Software Engineering

no absolutely rigid distinction between system organization and modular
decomposition

usually, modules are smaller than sub-systems which allows alternative
decomposition styles

e.g., object-oriented decomposition - you decompose the
system into a set of communicating objects

20
Dr. Petru Florin Mihancea

Object-Oriented Design

... is concerned with developing an object-oriented
model of a software to implement the identified
requirements

the objects in the design are related to the solution of the problem

usually, close relationship between solution objects and problem objects but
the designer may also add new objects and transform problem objects to
design the solution

Sommerville - Software Engineering

We need criteria to evaluate a design

and rules and principles to create good

designs

... but what is good design?

21

Dr. Petru Florin Mihancea

ModularityA When is a modular decomposition modular ?

favors extensibility, reusability and other factors
of software maintenance

A software construction method is modular if it helps designers
produce software systems made of autonomous elements
connected by a coherent, simple structure

Meyer - Object-Oriented Software Construction

The idea focuses the design

but it can also be applied

during the analysis

Modularity is the property of a system that has been decomposed
into a set of cohesive and loosely coupled modules

Booch - Object-Oriented Analysis and Design

22
Dr. Petru Florin Mihancea

Modularity Criteria (1)

Decomposability

decompose a problem into several less complex sub-
problems, connected by a simple structure and
independent enough to allow work separately on each
of them

Meyer - Object-Oriented Software Construction

Goal
labor division: distribute the
work on different module to
different people

... but dependencies must be
kept to a minimum and must
be explicit

23

Dr. Petru Florin Mihancea

Modularity Criteria (1)

Decomposability

decompose a problem into several less complex sub-
problems, connected by a simple structure and
independent enough to allow work separately on each
of them

Example
Top-Down Functional Design
Counterexample
Initialization module
endangering the autonomy (e.g.
the author of init module will
work close to each of the
authors of the other modules)

Meyer - Object-Oriented Software Construction

In OO every module is
responsible to initialize its data

24
Dr. Petru Florin Mihancea

Modularity Criteria (2)

Composability

the obtained modules should be freely combined to
produce new systems (possibly in a different environment)

Meyer - Object-Oriented Software Construction

Goal
reuse and thus the modules should be sufficiently autonomous from their
immediate goal to be possible to be used in widely different contexts

Example
Libraries
powerful collection, linear
algebra, etc. libraries
UNIX Shell Command
Counterexample
Top-Down Functional Design
The modules tend to be closely
linked to the immediate
context and thus impossible to
reuse in different contexts

25

Dr. Petru Florin Mihancea

Modularity Criteria (3)

Understandability

a human reader must understand each module without
having to know other, or, at worst, by having to
examine only a few other modules

Meyer - Object-Oriented Software Construction

Counterexample
sequential dependencies
e.g., A -> B -> C when B works
correctly only if it is executed
before C and after A

26
Dr. Petru Florin Mihancea

Modularity Criteria (4)

Continuity

a small requirement change triggers a change of just
one or of a small number of modules

Meyer - Object-Oriented Software Construction

Example
symbolic constants instead of magic
constant (e.g. public static final int
MAX = 10;)

27

Dr. Petru Florin Mihancea

Modularity Criteria (5)

Protection

abnormal conditions occurring at run time in a module
will remain confined to that module, or at worst will
only propagate to a few neighboring modules

Meyer - Object-Oriented Software Construction

Example
Validate inputs at the source
Counterexample
Undisciplined usage of exception

28
Dr. Petru Florin Mihancea

Rules to Ensure ModularityB Direct Mapping

keep a close mapping between the structure
of the solution and the structure of the

problem

Favors

Continuity - limits the impact of change

Decomposability - modular decomposition of the problem is
a good start for modular decomposition of the software

29

Dr. Petru Florin Mihancea

Rules (2)

Few Interfaces

Every module should communicate

with as few others as possible

Meyer - Object-Oriented Software Construction

Favors all criteria: e.g.,

composability - how can

you reuse a module that

depends on many other

modules ?

Centralized structure Decentralized structure found in
good object-orientation

30
Dr. Petru Florin Mihancea

Rules (3)

Small Interfaces

if two modules communicate, they should
exchange as little information as possible

Particular important for

continuity and protection

Meyer - Object-Oriented Software Construction

31

Dr. Petru Florin Mihancea

Rules (4)

Explicit Interfaces

When two modules communicates this

must be obvious from their text

Particular important for

continuity, protection,

continuity and

understandability

Indirect coupled although
there is no apparent

connection (i.e.,
procedure call)

Meyer - Object-Oriented Software Construction

32
Dr. Petru Florin Mihancea

Rules (5)
Information Hiding

for a module, we must select a subset of
module’s properties as the official information

about the module, to be made available to
authors of client modules

Meyer - Object-Oriented Software Construction

public properties /
interface

(specification of the
module functionality)

non-public
(implementation details / decisions

prone to change)

Primary reason: continuity

- changing some secret part

will not affect the clients

33

Dr. Petru Florin Mihancea

Some Heuristics, Principles and
Laws in Object-Oriented Context

C
34

Dr. Petru Florin Mihancea

class ComplexNumber {
public double x,y;

}

class C {
...
public void method3(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class A {
...
public void method1(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class B {
...
public void method2(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class D {
...
public void method4(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

For some reason, we

decide to change the

number representation

using its module and

angle

Why ?All data should be hidden (private)
within its class

Riel’s Heuristic 2.1a

35

Dr. Petru Florin Mihancea

class C {
...
public void method3(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class A {
...
public void method1(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class B {
...
public void method2(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class D {
...
public void method4(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class ComplexNumber {
public double module, angle;

}

1. Changing the names is

easy (Rename Refactoring)

Why ?All data should be hidden (private)
within its class

Riel’s Heuristic 2.1a

35
Dr. Petru Florin Mihancea

class C {
...
public void method3(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class A {
...
public void method1(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class B {
...
public void method2(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class D {
...
public void method4(ComplexNumber n) {

... // computation based on n.x, n.y
}
...

}

class ComplexNumber {
public double module, angle;

}

2. But the data semantics

changed thus, we must

modify all the clients !!!

Why ?All data should be hidden (private)
within its class

Riel’s Heuristic 2.1a

35

Dr. Petru Florin Mihancea

class D {
...
public void method4(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class C {
...
public void method3(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class A {
...
public void method1(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class B {
...
public void method2(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class ComplexNumber {
private double x,y;//+ init methods
public double getX() {return x; }
public double getY() {return y; }

}

Why ?All data should be hidden (private)
within its class

Riel’s Heuristic 2.1a

35
Dr. Petru Florin Mihancea

class D {
...
public void method4(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class C {
...
public void method3(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class A {
...
public void method1(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class B {
...
public void method2(ComplexNumber n) {

... // computation based on n.getX/Y()
}
...

}

class ComplexNumber {
private double module,angle; //+ init methods
public double getX() {return module * Math.cos(angle);}
public double getY() {return module * Math.sin(angle); }

}
We can limit the modifications

at the class level

(and instantiation code)

Note: We should also bring the

common behavior

implemented in clients to this

class (bring data and

operations together e.g.,

addition of complex numbers)

Why ?All data should be hidden (private)
within its class

Riel’s Heuristic 2.1a

35

Dr. Petru Florin Mihancea

Open-Closed Principle

Software entities (e.g. classes, methods)
should be open for extensions but closed
for modifications

Bertrand Meyer
(restated by Robert Martin)open for extensions

 to be able to extend their behavior

closed for modifications
 ... but without modifying their code

yeah, sure ...

b

36
Dr. Petru Florin Mihancea

Example
A program working with

geometrical figures

...
+drawCircle() : void

Circle
...
+drawSquare() : void

Square

class Painter {
 public void drawAll(Object[] figs) {
 for(Object aFig : figs) {
 if(aFig instanceof Circle) {
 ((Circle)aFig).drawCircle();
 } else {
 ((Square)aFig).drawSquare();
 }
 }
 }
}

37

Dr. Petru Florin Mihancea

Example
A program working with

geometrical figures

...
+drawCircle() : void

Circle
...
+drawSquare() : void

Square

class Painter {
 public void drawAll(Object[] figs) {
 for(Object aFig : figs) {
 if(aFig instanceof Circle) {
 ((Circle)aFig).drawCircle();
 } else {
 ((Square)aFig).drawSquare();
 }
 }
 }
}

After a period of time, we
must also add triangles1. Add the corresponding class

2. In all places where we distinguished
between several types of figures we should
add an additional if-instanceof-else

Painter class does not comply to

OCP with respect to the addition

of new types of figures

Runtime error -

ClassCastException !!! The

compiler cannot help you

...
+drawTriangle() : void

Triangle

37
Dr. Petru Florin Mihancea

Example
A program working with

geometrical figures

...
+drawCircle() : void

Circle
...
+drawSquare() : void

Square

After a period of time, we
must also add triangles1. Add the corresponding class

2. In all places where we distinguished
between several types of figures we should
add an additional if-instanceof-else

Painter class does not comply to

OCP with respect to the addition

of new types of figures

...
+drawTriangle() : void

Triangle

class Painter {
 public void drawAll(Object[] figs) {
 for(Object aFig : figs) {
 if(aFig instanceof Circle) {
 ((Circle)aFig).drawCircle();
 } else if(aFig instanceof Square) {
 ((Square)aFig).drawSquare();
 } else {
 ((Triangle)aFig).drawTriangle();
 }
 }
 }
}

37

Dr. Petru Florin Mihancea

Example
A program working with

geometrical figures

class Painter {
 public void drawAll(Figure[] figs) {
 for(Figure aFig : figs) {
 aFig.draw();
 }
 }
}

...
+draw() : void

Figure

...
+draw() : void

Circle
...
+draw() : void

Square

38
Dr. Petru Florin Mihancea

Example
A program working with

geometrical figures

class Painter {
 public void drawAll(Figure[] figs) {
 for(Figure aFig : figs) {
 aFig.draw();
 }
 }
}

After a period of time, we
must also add triangles1. Add the corresponding class

Painter class complies to OCP

with respect to the addition of

new types of figures

...
+draw() : void

Figure

...
+draw() : void

Circle
...
+draw() : void

Square

and ... done!

Can also draw triangles; due to

dynamic binding the

corresponding implementation of

the draw operation is invoked
...
+draw() : void

Triangle

38

Dr. Petru Florin Mihancea

Do not use inheritance just to
reuse the code of a superclass

[it should also be used for polymorphism]

Favor object composition instead
of class inheritance

GOF

Use Inheritance Correctlyc

39
Dr. Petru Florin Mihancea

Case Study

...
+add(o : Object) : boolean
+get(index : int) : Object
+isEmpty() : boolean
+removeElementAt(index:int) : void
...

Vector “Simulates” an array whose capacity can change.
We assume it is already implemented.

+push(o:Object) : Object
+pop() : Object
+peek() : Object
+empty() : boolean

Stack LIFO (Last-In-First-Out) data structure
with usual operations:

push - adds on top of the stack
pop - extracts the element from the top

We must implement it ... what can we do ?

?

class Stack extends Vector {
! public Object push(Object o) {
! ! this.add(o);
! ! return o;
! }
! public Object pop() {
! ! Object r = this.get(this.size() - 1);
! ! this.removeElementAt(this.size() - 1);
! ! return r;
! }
! ...
}

40

Dr. Petru Florin Mihancea

Case Study (2)

...
+add(o : Object) : boolean
+get(index : int) : Object
+isEmpty() : boolean
+removeElementAt(index:int) : void
...

Vector

+push(o:Object) : Object
+pop() : Object
+peek() : Object
+empty() : boolean

Stack

?

class Main {
public static void main(String args[]) {! !
! Stack stk = new Stack();
! stk.push(new Integer(5));
! stk.push(new Integer(10));
! Object p = stk.pop();
! System.out.println(p);

In the stack object (the top is at the right)

5

0
OUTPUT
10

41
Dr. Petru Florin Mihancea

Case Study (2)

...
+add(o : Object) : boolean
+get(index : int) : Object
+isEmpty() : boolean
+removeElementAt(index:int) : void
...

Vector

+push(o:Object) : Object
+pop() : Object
+peek() : Object
+empty() : boolean

Stack

?

class Main {
public static void main(String args[]) {! !
! Stack stk = new Stack();
! stk.push(new Integer(5));
! stk.push(new Integer(10));
! Object p = stk.pop();
! System.out.println(p);
!
! stk.add(new Integer(11));

// with add (?) what does it mean for a stack ?
! stk.removeElementAt(0);
 // what (????) in a stack I should be able to access only
 //the top element
! ...
}

}

In the stack object (the top is at the right)

OUTPUT
10

11

0

41

Dr. Petru Florin Mihancea

Case Study (2)

...
+add(o : Object) : boolean
+get(index : int) : Object
+isEmpty() : boolean
+removeElementAt(index:int) : void
...

Vector

+push(o:Object) : Object
+pop() : Object
+peek() : Object
+empty() : boolean

Stack

?

class Main {
public static void main(String args[]) {! !
! Stack stk = new Stack();
! stk.push(new Integer(5));
! stk.push(new Integer(10));
! Object p = stk.pop();
! System.out.println(p);
!
! stk.add(new Integer(11));

// with add (?) what does it mean for a stack ?
! stk.removeElementAt(0);
 // what (????) in a stack I should be able to access only
 //the top element
! ...
}

}

In the stack object (the top is at the right)

OUTPUT
10

11

0

Operations that do not

characterize a stack can be

invoked on a stack object ?!?!?!

41
Dr. Petru Florin Mihancea

The Right Way
class Stack {
! private Vector v = new Vector();
! public Object push(Object o) {
! ! v.add(o);
! ! return o;
! }
! public Object pop() {
! ! Object r = v.get(v.size() - 1);
! ! v.removeElementAt(v.size() - 1);
! ! return r;
! }

}

class Main {
 public static void main(String args[]) {! !
! Stack stk = new Stack();
! stk.push(new Integer(5));
! stk.push(new Integer(10));
! Object p = stk.pop();
! System.out.println(p);
!
! stk.add(new Integer(11)); // compile error
! stk.removeElementAt(0); // compile error
 ! ...
 }
}

...
+add(o : Object) : boolean
+get(index : int) : Object
+isEmpty() : boolean
+removeElementAt(index:int) : void
...

Vector

+push(o:Object) : Object
+pop() : Object
+peek() : Object
+empty() : boolean

Stack
1

... additionally, it might be

possible to change the Vector

object with an instance of one of

its subclasses even at runtime

42

Dr. Petru Florin Mihancea

NEVER do that ...
class Stack extends Vector {
! public Object push(Object o) {
! ! this.add(o);
! ! return o;
! }
! public Object pop() {
! ! Object r = this.get(this.size() - 1);
! ! this.removeElementAt(this.size() - 1);
! ! return r;
! }
 !public void removeElementAt(int index) {
! ! //Overriding
! ! throw new RuntimeException("I don’t know how :(");
! }
! ...
}

public static void main(String argv[]) {
! Vector v = new Vector();
! v.add(new Integer(5));
! Client.doSomething(v);
}

public class Client {
 public static void doSomething(Vector v) {
! if(v.size() > 0) {
! ! System.out.println(v.get(0));
! ! v.removeElementAt(0);
! }
 }
}

OUTPUT
5

43
Dr. Petru Florin Mihancea

NEVER do that ...
class Stack extends Vector {
! public Object push(Object o) {
! ! this.add(o);
! ! return o;
! }
! public Object pop() {
! ! Object r = this.get(this.size() - 1);
! ! this.removeElementAt(this.size() - 1);
! ! return r;
! }
 !public void removeElementAt(int index) {
! ! //Overriding
! ! throw new RuntimeException("I don’t know how :(");
! }
! ...
}

public class Client {
 public static void doSomething(Vector v) {
! if(v.size() > 0) {
! ! System.out.println(v.get(0));
! ! v.removeElementAt(0);
! }
 }
}

public static void main(String argv[]) {
! Stack s = new Stack();
! s.push(new Integer(5));
! Client.doSomething(s);! !
}

OUTPUT
5
Exception in thread "main" java.lang.RuntimeException: I don’t know how :(
	 at Stack.removeElementAt(Stack.java:13)
	 at Client.doSomething(Client.java:7)
	 at Client.main(Client.java:18)

You will learn about the Liskov

Substitution Principle next

semester

43

Dr. Petru Florin Mihancea

Would you try to modify this
system?

http://thedailywtf.com/Comments/The-Enterprise-Dependency.aspx

Too m
any d

ependencie
s !Module

Dependency

Law o
f D

em
ete

r c
an h

elp

you re
ducin

g t
he n

um
ber

of d
ependencie

s

d

44
Dr. Petru Florin Mihancea

Law of Demeter

class Demeter { //Java
private A a = new A();
public void example(B b) {

//this / super
this.aMethod();
//received parameters
b.executeSomething();
//objects created in the method or
//received from a method that creates
//the objects
new A().exec();
//members of the method class
a.exec();

}
...

}

The law of Demeter for functions states
that any method of an object should call

only methods belonging to :

Various forms exist

45

Dr. Petru Florin Mihancea

Example and Correction

class Car {
private Engine e = new Engine();
public void increaseSpeed() {

e.getCarburetor().setOpenFuelValve(true);
}
...

}

class Engine {
private Carburetor c = new Carburetor();
public Carburetor getCarburetor() {

return c;
}
...

}

class Carburetor {
private boolean openFuelValve = false;
public void setOpenFuelValve(boolean b) {

openFuelValve = b;
}
...

}

S. Demeyer, S. Ducasse, O. Nierstrasz - OO Reengineering Patterns

46
Dr. Petru Florin Mihancea

Example and Correction

class Carburetor {
private boolean openFuelValve = false;
public void setOpenFuelValve(boolean b) {

openFuelValve = b;
}
...

}

class Engine {
private Carburetor c = new Carburetor();
public void speedUp() {

c.setOpenFuelValve(true);
}
...

}

class Car {
private Engine e = new Engine();
public void increaseSpeed() {

e.speedUp();
}
...

}

Reduce
s t

he n
um

ber o
f

dependencie
s,

re
duce

s

th
e n

um
ber o

f g
et’s

But do not be paranoiac

(e.g. you can violate the

law for optim
ization

purposes)

S. Demeyer, S. Ducasse, O. Nierstrasz - OO Reengineering Patterns

46

