
V20240423

Software Engineering Fundamentals

Dr. Petru Florin Mihancea

Object-Oriented Analysis

Based on:
R. Pressman - Software Engineering, Ch.20 - Object-Oriented Concepts and
Principles Ch. 21 - Object-Oriented Analysis
D. Rubin - Introduction to CRC Cards
K. Beck, W. Cunningham - A Laboratory for Teaching Object-Oriented Thinking
A. Riel - Object-Oriented Design Heuristics, Ch.2 - Classes and Objects, Ch.3
-Topologies of AO vs. OO Applications Dr. Petru Florin Mihancea

Object-Oriented Analysis

The objective of object-oriented analysis is to
develop an [object-centric] model(s) that describes
computer software as it works to satisfy a set of
customer-defined requirements

Pressman - Software Engineering

Important questions
What are the relevant objects in the problem to be solved ?

How do they relate and interact with one another ?

How does an object behave ?

Dr. Petru Florin Mihancea

Process Overview

Class/Sequence
Diagram Modelling
(initially, problem domain models

with few implementation /
technological/design constraints)

Use Case
Use Case

Use Case

Use Cases Modelling
(text + diagram)

Scenarios
ScenariosCustomer/

User

CRC Modeling

Class

Responsibility Colaboration

Class

Responsibility Colaboration

Class

Responsibility Collaborator

Dr. Petru Florin Mihancea

1
Class-Responsibility-Collaborator

(CRC) Modeling

Dr. Petru Florin Mihancea

CRC Modeling

A technique to identify candidate classes and
indicate their responsibilities and collaborators

Various dimensions are recommended by different authors (e.g., 4’’x6’’,3’’x5’’),
but a simple approach is to split an A4 paper into 8 cards :)

Pressman - Software Engineering

Use simple index cards

Class

Responsibility Collaborator

Dr. Petru Florin Mihancea

CRC Modelling Session

The Team (a maximum of 6 people)

Domain users
know the problem domain, good communication skills

Object-Oriented analysts
understand CRC & OO modelling processes, experience in OO
development

One facilitator
understand CRC & OO modelling process
chairs the session, responsible to keep the session progressing, act as
an intermediary when debates occur

May include non-active participants
scribe (capturing information that is not written on the CRC cards),
observers (other users and developers)

Dr. Petru Florin Mihancea

CRC Modelling Session (2)

1. Identify one appropriate scenario
should be well documented
select an easy scenario first
start with a normal execution scenario
related scenarios should be modelled separately
 during this discussion, an initial set of classes might be identified; for

 those classes create a CRC card, and also create cards for classes
 that already exist (have been previously modelled)

Dr. Petru Florin Mihancea

CRC Modelling Session (3)
2. “Execute” the scenario and identify classes,
responsibilities and collaborators

In the beginning think that a requester/user asks a class to start the
scenario execution

That class might ask for some information to start the scenario and the
requester could say that the class must know that information; thus we
have identified a responsibility of that class or another class with which
our class collaborates in order to find that information

When a class, responsibility or collaborator is

identified it is written on the corresponding

CRC card

Dr. Petru Florin Mihancea

CRC Modelling Session (3)
2. “Execute” the scenario and identify classes,
responsibilities and collaborators

In the beginning think that a requester/user asks a class to start the
scenario execution

That class might ask for some information to start the scenario and the
requester could say that the class must know that information; thus we
have identified a responsibility of that class or another class with which
our class collaborates in order to find that information

During the scenario “execution” many other information and actions
will be required; the starting class will know that information or how to
perform the action (new responsibility is found for it) or it will ask
another collaborator class (maybe a new class) for that information or
action (and maybe new responsibilities for the collaborator are found)

The team continues until the entire scenario can be executed using the
identified classes with their responsibilities and following the links to
the collaborators

Dr. Petru Florin Mihancea

ClassesClass

Responsibility Collaborator

How to identify them ?

“Grammatical parse” on the processing narrative
All nouns or noun clauses are potential objects/classes
Categorisation
external entities (e.g., devices)
things (e.g., reports, displays)
events (e.g., a completion/occurrence of an action)
roles (e.g., manager, engineer)
organisational units (e.g., division, department)
places (e.g., classroom)
structures (e.g., four-wheel vehicles)

Dr. Petru Florin Mihancea

Classes

Identify what the customer interacts with
 screens, reports, etc. represent user interface classes, and for the sake
 of the CRC modelling, use a single class to represent the UI

If a class can’t be named with less than 3 words, it is
probably not a class but a responsibility of another class

Class

Responsibility Collaborator

How to identify them ?

Dr. Petru Florin Mihancea

Responsibility

Anything a class knows or does
 attributes and operations

The attributes define the object, clarify what is meant by
the object in the context of the problem

Finding attributes
analyse the processing narrative and select those things that reasonably
belong to an object

ask what data items fully define the object in the context of the current
problem

What are them and
how to identify them ?

Class

Responsibility Collaborator

Dr. Petru Florin Mihancea

Responsibility

Anything a class knows or does
 attributes and operations

The operations define the object behaviour
Finding operations
analyse the processing narrative and select those operations that
reasonably belong to an object; usually they will appear as verbs

What do they usually do ?
a. computations
b. data manipulation (e.g., add, remove)
c. query (e.g., about the state of the object)
d. monitor an object (e.g., the occurrence of an event)

What are them and
how to identify them ?

Class

Responsibility Collaborator

Dr. Petru Florin Mihancea

Classes

Important characteristics (to become object/class in the model)

1. Retain information
data about the object must be remembered to enable the system to
function
2. Needed services
must have operations that change the value of the object attributes
3. Multiple attributes
an object with a single attribute should be represented as an attribute of
another object during analysis to enable the focus on “major” information
4. Common attributes and operations
attributes and operations are common to all occurrences of an object
5. Essential requirements
entities that produce or consume information essential to the operation of
any solution

Class

Responsibility Collaborator

How to identify them ?

Dr. Petru Florin Mihancea

Responsibility

1. System intelligence should be evenly distributed

Class

Responsibility Colaboration

Class

Responsibility Colaboration

Class

Responsibility Colaboration

Class

Responsibility Colaboration

This model is NOT good because of this huge

class here that does all the work and probably

collaborates with a lot of small and dumb other

classes around it

- that is why you should keep the physical CRC

cards sufficiently small to enforce you to split

the system intelligence :)

Guidelines

Class

Responsibility Collaborator

Dr. Petru Florin Mihancea

Responsibility

1. System intelligence should be evenly distributed
2. Information about one thing should be localized in a single
class not distributed across multiple classes
manipulating/storing a specific kind of information should be the
responsibility of a single class

3. Information and the behavior related to it should reside
in the same class (do you remember encapsulation? :))

4. Responsibilities should be shared among related classes
the objects player, player-body, and player-head have their own attributes
(e.g., position on the screen); a player knows that it must display itself but
collaborates with the other objects to actually display the player on the
screen

Guidelines

Class

Responsibility Collaborator

Dr. Petru Florin Mihancea

Collaborator

A class fulfils its responsibility
1. exclusively using its operations and attributes
2. in collaboration with another class

Finding collaborators
Can this class fulfil each responsibility all by itself? If it cannot, it must
interact with another class and thus a collaborator is found
A class may need information that it doesn’t have; a collaborator will
provide that information
A class may need to modify some information that it doesn’t have; a
collaborator will probably know to do that
...

What are them and
how to identify them ?

Class

Responsibility Collaborator

Dr. Petru Florin Mihancea

Collaborator

Usually collaborations help identifying relations between
classes :)

has-knowledge-of (UML associations)
has-as-part / is-part-of (UML aggregation)
UML composition
UML dependencies

What are them and
how to identify them ?

Class

Responsibility Collaborator

Based also on responsibilities we can start

drawing class diagrams :)

Dr. Petru Florin Mihancea

Does this execution sound familiar ?

CRC Modelling Session (4)
3. CRC model review (role-playing)

a. Cards are distributed to participants; collaborating cards must be
given to different people

b. The facilitator reads the scenario and when a particular object
comes to “execution” the person having the corresponding card
“becomes” that object (and may hold the card in the air)

c. Continuing the scenario, it will be found that the current object
must perform some responsibility; the person reads it from the card
and describes it; during this description the execution could go to a
collaborator (and the corresponding person will become the
corresponding object and will act in a similar way)

d. If it is observed that the classes (with their responsibilities and
collaborators) can accommodate the current scenario the review is
finished; otherwise, the model should be improved (e.g., new
responsibilities, collaborations, classes)

Based on collaborations we can start drawing

also the sequence diagrams :)

Dr. Petru Florin Mihancea

2
Modelling Heuristics

Dr. Petru Florin Mihancea

A The class
proliferation problem

How to (properly) reduce the number of

classes ?

Dr. Petru Florin Mihancea

Eliminate irrelevant classes

Riel’s Heuristic 3.7

Irrelevant class
Has no meaningful behaviour
 i.e., only some get/set/print operations acting on some
 attributes
 e.g., a method returning the colour of a car is not usually
 an interesting behaviour in a problem domain

Special cases for get/set operations
 e.g., for a sensor getting its status is a relevant behaviour

Eliminating such classes will probably imply

demoting them to attributes

Dr. Petru Florin Mihancea

Be sure the abstractions that you model
are classes and not simply the roles

objects play
Riel’s Heuristic 2.11

Riel - OO Design Heuristics

Person

OR
Father

Mother

Child

If different behaviour
 then different classes
e.g., go_into_labor()

Otherwise, we have different
roles of the same class
e.g., change_diapers()

Be careful: a person playing the father role

must be able to change_diapers() even if only a

mother role does that! Otherwise we are again

in the first case

Dr. Petru Florin Mihancea

Do not turn an operation into a class.
Be suspicious of any class whose name is a verb or is

derived from a verb, especially those that have only one
piece of meaningful behaviour ...

Riel’s Heuristic 3.9

Image InvertImage

invertAnImage

Dr. Petru Florin Mihancea

Constructive Joke

0 ... because an object-oriented
developer will teach the light
bulb to screw itself !

How many object-oriented
developers are needed to
screw a light bulb ?

http://en.wikipedia.org/wiki/Edison_screw

Dr. Petru Florin Mihancea

Do not turn an operation into a class.
Be suspicious of any class whose name is a verb or is

derived from a verb, especially those that have only one
piece of meaningful behaviour ...

Riel’s Heuristic 3.9

Image InvertImage

invertAnImagexinvertTheImage

Dr. Petru Florin Mihancea

Do not turn an operation into a class.
Be suspicious of any class whose name is a verb or is

derived from a verb, especially those that have only one
piece of meaningful behaviour ...

Riel’s Heuristic 3.9

Image

invertTheImage
rotateTheImage

scaleTheImage

...

Counterexample

Scale

Image

Rotate

angle
execute execute

factor

when requirements treat the actions
as atoms/things/objects that can be manipulated
individually (e.g., record persistently the history
of actions performed on an image, the command
design pattern)

Dr. Petru Florin Mihancea

Agent classes are often placed in the analysis model of
an application. During design time, many agents are
found to be irrelevant and should be removed

Riel’s Heuristic 3.10

On an object-oriented farm there is an object-oriented cow
with some object-oriented milk. Should the object-oriented
cow send the object-oriented milk the uncow yourself
message, or should the object-oriented milk send the
object-oriented cow the unmilk yourself message?

Meiler Page-Jones (OOPSLA '87)

a book should send the bookshelf the book_yourself
message or a bookshelf should send the book the
shelf_yourself message?

Riel - OO Design Heuristics

There is a key element missing,

namely, the object-oriented farmer

and the object-oriented librarian. Are

these abstractions classes?

Dr. Petru Florin Mihancea

Agent classes are often placed in the analysis model of
an application. During design time, many agents are
found to be irrelevant and should be removed

Riel’s Heuristic 3.10

:Book :BookShelf:Librarian

agent

put_me_on_shelf put_book_on_shelf

book_is_on_shelfyou_are_on_shelf

But of what use is the object-oriented librarian ?
If it just takes messages from one object
and passes them to the other then it is
irrelevant

xput_me_on_shelf

you_are_on_shelf

This decision is taken at design time. If

additional behavior exists in the agent

(e.g., check due date, sending fine

notices) then it should be kept

Dr. Petru Florin Mihancea

B The intelligence uniform
distribution problem

Distribute system intelligence horizontally
as uniform as possible [...] classes in a

design should share the work uniformly

Riel’s Heuristic 3.1

Class

Responsibility Colaboration

Class

Responsibility Colaboration

Class

Responsibility Colaboration

Class

Responsibility Colaborationx

Dr. Petru Florin Mihancea

Example

Room Temperature Regulator
 Temperature Sensor
 Temperature Selector Device
 Presence Sensor

 Temperature can decrease up to 5 degree below desired if the room is empty

:Regulator :Heater

:TemperatureSensor

:PresenceSensor

:SelectorDevice getDesiredTemp

getPresenceStatus

getCurrentTemp

start/stop

Starts becoming too intelligent
(GodClass) because
1. it controls the heating process
2. it detects the need for heating

Dr. Petru Florin Mihancea

Example

Room Temperature Regulator
 Temperature Sensor
 Temperature Selector Device
 Presence Sensor

 Temperature can decrease up to 5 degree below desired if the room is empty

:Regulator :Heater

getDesiredTemp

getPresenceStatus

getCurrentTemp

start/stop

:Room

:SelectorDevice

:PresenceSensor

:TemperatureSensor
Same thing, it is too intelligent
for the same reasons

And the Room class is not more
intelligent; after all, it just passes
messages/data

getPresenceStatus

getDesiredTemp

getCurrentTemp

Dr. Petru Florin Mihancea

Correct the Example

Let the Room deciding the need for heat
 it has all the necessary data

:Regulator :Heater

need_heat?

start/stop
:Room

:SelectorDevice

:PresenceSensor

:TemperatureSensor
It controls the heating
process

The Room class is no longer
dumb - it detects the need for
heating Although in the real word a

room cannot do that, this is the proper design

solution (or maybe change the class name)

Dr. Petru Florin Mihancea

3
UML Class and Sequence

Diagrams

Dr. Petru Florin Mihancea

Unified Modeling Language

Family of graphical notations

for modeling an (OO) system
Goal

Learn the notations
Dr. Petru Florin Mihancea

Types of UML models

Structural
e.g. Class diagram (CD)

Behavioral
e.g. Sequence diagram (SD)

Booch - OO Analysis and Design

Goal Refined

Learn the notations for

CD
 and SD

Dr. Petru Florin Mihancea

1
Structural model

Class diagram

SomeClass

Classes

Operation
Operation

Attribute
Attribute

SomeClass

Features

Operation
Operation

Attribute
Attribute

OtherClass

Operation
Operation

Attribute
Attribute

SomeClass

Relations

Dr. Petru Florin Mihancea

class Name {

}

1Class diagram

Name

UML sketch Java sketch

Dr. Petru Florin Mihancea

abstract class Name {

}

{abstract}
Name

1Class diagram

UML sketch Java sketch
Dr. Petru Florin Mihancea

interface Name {

}

<<interface>>
Name

1Class diagram

UML sketch Java sketch

Dr. Petru Florin Mihancea

class Name {
private int i;
protected Integer[] s;
//s must be somehow initialized / created
//an index may be required + you must
//guarantee NO upper limit if necessary
//(e.g. re-create & copy the array)

}

1 - exactly one
0..1 - zero or at most one

0..* or * - zero or more but
NO upper limit

1Class diagram

visibility name : type multiplicity
= implicitValue

class Name {
private int i;
protected List<Integer> s;
//s must be somehow initialized / created

}

-i:int
#s:Integer[*]

Name

Attributes

UML sketch Java sketch
Dr. Petru Florin Mihancea

1Class diagram

visibility name(param_list) : ret_type

class Name {
public int set(int n) {

...
}

}

direction name : type = default

+set(n:int):int

Name

Operations

UML sketch Java sketch

Dr. Petru Florin Mihancea

1Class diagram

class Name {
private static int k;
public static void inc() {

...
}

}

+inc():void
-k:int

Name

Scope

UML sketch Java sketch
Dr. Petru Florin Mihancea

class A {
}

class B extends A {
}

A

B

1Class diagram
Generalisation & Realisation

UML sketch Java sketch

Dr. Petru Florin Mihancea

interface A {
}

interface B extends A {
}

<<interface>>
A

<<interface>>
B

1Class diagram
Generalisation & Realisation

UML sketch Java sketch
Dr. Petru Florin Mihancea

interface A {
}

class B implements A {
}

<<interface>>
A

B

1Class diagram
Generalisation & Realisation

UML sketch Java sketch

Dr. Petru Florin Mihancea

1Class diagram
Association

class Person {

//list must be somehow initialized / created

private List<Car> owned_car;

//add, remove methods usually exist

}

Person Car0..*0..1

-owned_cars

UML sketch Java sketch
Dr. Petru Florin Mihancea

1Class diagram
Aggregation

Similar to
association

UML sketch Java sketch

Whole Part* 0..11

Dr. Petru Florin Mihancea

1Class diagram
Composition

class A {

private List my_list =
 new ...

public A(...) {
my_list.add(new B(...));

}
public void add(...) {

my_list.add(new B(...));
}

A B1..*

1. No-sharing
II. B objects cannot exists

 without their A object

UML sketch Java sketch
Dr. Petru Florin Mihancea

1Class diagram
Dependency

A B

class A {

public void m(B x) {
x.doS();

}

}

And many other
cases ...

UML sketch Java sketch

Dr. Petru Florin Mihancea

: A

aName : B

2Sequence diagram

Object of A
class

Behavioural & Interaction model

Dr. Petru Florin Mihancea

: A

aName : B

2Sequence diagram

Lifeline

Time

Behavioural & Interaction model

Dr. Petru Florin Mihancea

: A

aName : B

2Sequence diagram

Message

Behavioural & Interaction model

m(aName)

n()

5

l()

Dr. Petru Florin Mihancea

: A

aName : B

2Sequence diagram
Behavioural & Interaction model

m(aName)

n()

5

l()

Activation

Dr. Petru Florin Mihancea

: A

aName : B

2Sequence diagram
Behavioural & Interaction model

Return

m(aName)

n()

5

l()

Dr. Petru Florin Mihancea

class A {
public void m(B x) {

x.n();
}

}
class B {

public int n() {
this.l();
return 5;

}
public void l() {}

: A

aName : B

2Sequence diagram
Behavioural & Interaction model

m(aName)

n()

5

l()

UML sketch Java sketch

Dr. Petru Florin Mihancea

2Sequence diagram

class A {
public void m() {

...
new B();
...
//the object is
//no more accessible

}
}

UML sketch Java sketch

Object creation & deletion

: A

m()

 : B
new

Dr. Petru Florin Mihancea

2Sequence diagram
Other notations

Note

Comments

Synchronous

e.g. method invocation

Async Message

e.g. start an execution thread

: A

aName : B

m(aName)

n()

5

l()
Frame

e.g. loops, conditions

