
V20140312

Software Engineering Fundamentals

Dr. Petru Florin Mihancea

Software Development
Processes

Based on:
I. Summerville - Software Engineering 8, Ch. 4 Software Processes,
 Ch. 17. Rapid Software Development
R. Pressman - Software Engineering, Ch. 2 The Process
M. Fowler - UML Distilled, Ch2. Development Process
P. Deemer & G. Benefield - SCRUM Primer

1
Dr. Petru Florin Mihancea

A software process is a set of activities and
associated results that produce a software
product

Fundamental activities:

1. Software specification

defining the software to be produced

2. Software development

designing and programming

3. Software validation

checking to ensure that it is what the customer required

4. Software evolution

modification to adapt to customer / market requirements

A software process model = a simplified representation of a process

Software (Development) Process

2

Dr. Petru Florin Mihancea

Generic Models

1. Waterfall
separate steps/phases for specification, design, etc.

2. Iterative/Evolutionary
interleaves specification, development, validation activities, etc.

fast development of an initial system and refine it with the
customer

3. Component-based software engineering

 process focuses the integration of reusable components in order

 to build the software

3
Dr. Petru Florin Mihancea

The main contrast

Waterfall
Iterative/

Evolutionary
vs.

breaks down the
project based on activity

e.g.,
2-months analysis phase
followed by
4-months design phase
followed by
3-months coding phase
followed by
3-months testing phase

usually, breaks down the
project by subsets of

functionality

e.g., 3 iterations
1st iteration takes 1/4 of
 requirements and perform
 analysis,design, code, test;
 when iteration ends, we have a
 system doing 1/4 of all needed
 functionality
2nd iteration takes 1/4 of
 requirements and etc.

4

Dr. Petru Florin Mihancea

1
Waterfall model

5
Dr. Petru Florin Mihancea

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Summerville - Software Engineering

Together
with users, identify services,

constraints, goals; next, define
them in detail !

6

Dr. Petru Florin Mihancea

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Summerville - Software Engineering

Partition in HW and
SW requirements, and identify
the basic software abstractions

and their relationships

6
Dr. Petru Florin Mihancea

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Summerville - Software Engineering

The design in
“realized” as a set of program

units (e.g. methods/classes); next,
unit testing checks that each unit

meets its specification

6

Dr. Petru Florin Mihancea

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Summerville - Software Engineering

Individual units are put
together and tested as a

complete system to ensure
software requirements have

been met

6
Dr. Petru Florin Mihancea

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Summerville - Software Engineering

The software is put
into practice. Maintenance involves

correcting errors, improving
implementation, and adapting to

new requirements

6

Dr. Petru Florin Mihancea

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Summerville - Software Engineering

In principle:
• a phase starts only after the
previous ends
• a phase ends by producing
documents that are approved
(signed off) and frozen

In practice:
• these stages overlap a little
and feed information to each
other but still, after a short time,
the previous phase is frozen

7
Dr. Petru Florin Mihancea

Pros/Cons

Cons
inflexible partitioning of the project into distinct stages

premature “freezing” is dangerous during:

 requirements - it is not easy for a customer to

 explicitly state all the requirements;

 the software won’t do what the user wants

 design - leads to bad design and the flaws will be eliminated

 via programing hacks

commitments (frozen decisions) made at an early stage
make very difficult to respond to changing customer
requirements

customer must have patience - a working version comes late
in the project time-span

Pros
Documentation is produced at each phase

8

Dr. Petru Florin Mihancea

When to use ?

only when

requirements are well understood

and unlikely to radically change during
development

9
Dr. Petru Florin Mihancea

2
Iterative/Evolutionary models

10

Dr. Petru Florin Mihancea

Basic idea

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Summerville - Software Engineering

... develop an initial implementation,
exposing this to the user and refine it

through many versions until an adequate
system has been developed

Two fundamental types ...

11
Dr. Petru Florin Mihancea

A Throwaway prototyping

The objective is to understand the customer’s

 requirements and hence develop a better

requirements definition

• developer and customer
meet and define the overall
objectives of software,
identify whatever
requirements are known
• a quick design occur
focusing those aspects visible
to the user
• a prototype is built that is
then evaluated by the
customer to refine
requirements, enabling
developer to better
understand the requirementsPressman - Software Engineering

12

Dr. Petru Florin Mihancea

The Danger
Both user and developer like the approach
 users get quickly a feel of the actual system

 developers get to build something immediately

But ...
the users see a “working” version that is held together “with chewing gum
and baling wire”; DO NOT transform the prototype into a product by
applying “a few fixes” as the customer will beg :)

the developer will make implementation compromises, will neglect long-
term maintainability, etc. only to get fast a working prototype

after a while a developer might forget the reason for which some design/
implementation decisions were inappropriate and make them part of the

system

13
Dr. Petru Florin Mihancea

The Danger
Both user and developer like the approach
 users get quickly a feel of the actual system

 developers get to build something immediately

But ...
the users see a “working” version that is held together “with chewing gum
and baling wire”; DO NOT transform the prototype into a product by
applying “a few fixes” as the customer will beg :)

the developer will make implementation compromises, will neglect long-
term maintainability, etc. only to get fast a working prototype

after a while a developer might forget the reason for which some design/
implementation decisions were inappropriate and make them part of the

system
... clearly state that the prototype

is built to serve as a mechanism

for defining requirements ... it is

then discarded and another

paradigm will be used to build the

actual software

13

Dr. Petru Florin Mihancea

B Exploratory development

The objective of this type of processes is to work with
the customer to explore their requirements and deliver a

final system

start with the parts that are well understood

the system evolves by adding new features proposed by the customer

Pros

 specification can be developed incrementally

 producing systems that meet immediate needs

Cons

 the process is not so visible (from a managerial perspective)

 higher risk of poor structure (because of continuos change)

14
Dr. Petru Florin Mihancea

B Exploratory development

The objective of this type of processes is to work with
the customer to explore their requirements and deliver a

final system

start with the parts that are well understood

the system evolves by adding new features proposed by the customer

Pros

 specification can be developed incrementally

 producing systems that meet immediate needs

Cons

 the process is not so visible (from a managerial perspective)

 higher risk of poor structure (because of continuos change)
There are different models/

variations of this kind

14

Dr. Petru Florin Mihancea

Incremental Delivery

15
Dr. Petru Florin Mihancea

Incremental Delivery

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Summerville - Software Engineering

Customers identify in
outline the services provided
by the system; usually they
classify them as more/less

important

16

Dr. Petru Florin Mihancea

Incremental Delivery

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Summerville - Software Engineering

“Split the requirements” into a set of
increments each one providing a sub-set

of the entire functionality

16
Dr. Petru Florin Mihancea

Incremental Delivery

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Summerville - Software Engineering

Select increment (based on priorities), detail
requirements and develop it; meanwhile, further

requirements analysis can take for future increments
(changes in the current increment are not allowed)

16

Dr. Petru Florin Mihancea

Incremental Delivery

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Summerville - Software Engineering

We “install the
system” (having only a part of
its functionality); thus, the user
can offer feedback (e.g. clarify

requirements)

16
Dr. Petru Florin Mihancea

Incremental Delivery

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Summerville - Software Engineering

Next, continue with the following

increment

Provides an high-level design of
the system; it should be considered at the

beginning of the process in order to reduce
the degradation caused by adding

increments

16

Dr. Petru Florin Mihancea

Pros

Customers do not have to wait
 the increments from the beginning of the process can contain the

 most important functionality and it can be used by the users

The customer is directly involved
 due to user feedback:

 more likely to meet the desired requirements

 new requirements can be discovered / better refinement

Since increments with higher priority are
delivered first
 the most important functionality receives the most testing

Can cope with requirements changes

17
Dr. Petru Florin Mihancea

Cons

Contractual problems
usually based on specifications; it may be difficult to design a
contract where requirements are not fully defined from the
beginning

Validation problems
due to minimizing documentation and iterative specification, how
do we validate the system ?

Maintenance
continual change tends to degrade the structure of the system; thus
special actions must be considered during development to avoid
degradation

Management problems
they like processes that generate regular deliverables to assess
progress; it may not be time effective to write documents for very
fast iterations

18

Dr. Petru Florin Mihancea

Difficulties

Increments should be small and should
deliver some functionality
it can be difficult to map requirements onto increment of the right
size

A set of basic functionalities are common for
different parts of the system
it may be difficult to identify them since requirements are not
described in detail

Rework issues
due to modifications, redesign / deletion (in later iterations) of
some code might be seen as a waste; but it is better than having
poorly designed / patched code

19
Dr. Petru Florin Mihancea

Solution for the increment length

if you can’t build all you intended to build in an iteration

 ... slip some functionality from the iteration and

 DO NOT SLIP THE DATE of the iteration

Time boxing
iterations must be of a fixed length of time :)

good exercise for learning about requirements prioritization

20

Dr. Petru Florin Mihancea

When NOT appropriate ?

extremely large systems where teams are working in different
locations

embedded systems where software depends on hardware
development

extremely critical systems where all requirements must be analyzed
to be able to check for interactions that may compromise safety,
security and other critical issues

21
Dr. Petru Florin Mihancea

Spiral Model

Combines the iterative nature of prototyping

with the controlled and systematic aspects of

waterfall and provides potential for rapid

development of incremental versions

22

Dr. Petru Florin Mihancea

Spiral Model

Pressman - Software Engineering

3 to 6
task regions

23
Dr. Petru Florin Mihancea

Spiral Model

Pressman - Software Engineering

Tasks
required to establish

effective communications
with the customer

23

Dr. Petru Florin Mihancea

Spiral Model

Pressman - Software Engineering

Tasks required to
define resources,

timelines, etc.

23
Dr. Petru Florin Mihancea

Spiral Model

Pressman - Software Engineering

Tasks required to
assess risks. This is a

distinguishing
characteristic of the spiral
model. For requirements
risks, prototypes may be

constructed

23

Dr. Petru Florin Mihancea

Spiral Model

Pressman - Software Engineering

Tasks required to build
one or more

representations of the
application

23
Dr. Petru Florin Mihancea

Spiral Model

Pressman - Software Engineering

Tasks required to
construct, test, install

23

Dr. Petru Florin Mihancea

Spiral Model

Pressman - Software Engineering

Tasks required
to obtain the customer
feedback based on the

software representation
previously built

23
Dr. Petru Florin Mihancea

Spiral Model - View 1

Pressman - Software Engineering

• the first circuit might result
in the development of a
product specification
• next ones, progressively
more sophisticated versions
• each pass through a region
activates the specific tasks

24

Dr. Petru Florin Mihancea

Spiral Model - View 2

Pressman - Software Engineering

Can be adapted to apply

through the entire life of software

Each cube can be used to
represent the starting point
for different kinds of projects

In several iterations
we develop a “concept”

25
Dr. Petru Florin Mihancea

Spiral Model - View 2

Pressman - Software Engineering

Can be adapted to apply

through the entire life of software

Each cube can be used to
represent the starting point
for different kinds of projects

It may be decided to
transform the “concept” into

a product, and thus a new
product project starts

(having multiple iterations)

And so on, e.g. where a change is initiated, the
process starts at the appropriate entry point
e.g. product enhancement

25

Dr. Petru Florin Mihancea

Pros/Cons

Cons

might be difficult to convince customers that the evolutionary
approach is controllable (especially in contract situations)

considerable risk assessment expertise

the model has not been as widely used as other approaches, so
difficult to discuss about its success :(

Pros

explicitly consider risks and uses prototyping as a risk reduction
mechanism (at any stage in the evolution of the product)

maintains the systematic stepwise approach suggested by the classic
life-cycle, but integrates it into an iterative framework

26
Dr. Petru Florin Mihancea

Rational Unified Process

27

Dr. Petru Florin Mihancea

Dynamic perspective

The phases of the process model over time

Inception Elaboration Construction

Phase iteration

Transition
Summerville - Software Engineering

Somehow, reminds us about

Waterfall but ... the phases are

related to business concerns

(not technical activities)

28
Dr. Petru Florin Mihancea

Dynamic perspective

The phases of the process model over time

Inception Elaboration Construction

Phase iteration

Transition
Summerville - Software Engineering

Establish business use
cases for the system. Identify

external entities (people, other systems)
that interact with the system. Next, assess

the contribution of the system to the
business (should we

continue?)

28

Dr. Petru Florin Mihancea

Dynamic perspective

The phases of the process model over time

Inception Elaboration Construction

Phase iteration

Transition
Summerville - Software Engineering

Understand the
problem domain, establish an

architectural framework, and the
project plan, identify risks. At the end we

must have: requirements model,
architectural description,

development plan

28
Dr. Petru Florin Mihancea

Dynamic perspective

The phases of the process model over time

Inception Elaboration Construction

Phase iteration

Transition
Summerville - Software Engineering

System design,
programming and testing. Parts of

the system are developed in parallel and
integrated during this phase. At the end,

we must have the working system +
documentation.

28

Dr. Petru Florin Mihancea

Dynamic perspective

The phases of the process model over time

Inception Elaboration Construction

Phase iteration

Transition
Summerville - Software Engineering

“Move” the system from the
developer community to the user

community and make it work in the real
environment (this is something omitted by
other models). At the end: documented

and working system in the actual
working environment

28
Dr. Petru Florin Mihancea

Dynamic perspective

The phases of the process model over time

Inception Elaboration Construction

Phase iteration

Transition
Summerville - Software Engineering

Two ways for iterating:
a. the result of each phase can be built incrementally

b. all the phases can be enacted incrementally

28

Dr. Petru Florin Mihancea

Static perspective (1)

The activities (named workflows)

Summerville - Software Engineering

Strong connections with UML

29
Dr. Petru Florin Mihancea

Static perspective (2)

The activities (named workflows)

Summerville - Software Engineering

30

Dr. Petru Florin Mihancea

A combined perspective

http://projects.staffs.ac.uk/suniwe/project/rup.html

31
Dr. Petru Florin Mihancea

Practice perspective

Good practices to be used during RUP

Develop software iteratively
 plan increments based on customer priorities and

 deliver highest priority increments first

Manage requirements
 explicitly document user requirements (we will see use cases)

 and keep track of changes

Visually model software
 UML e.g. class diagrams, sequence diagrams

Others: Component-based architectures,

Verify quality, Control changes.

32

Dr. Petru Florin Mihancea

Innovations

separation of phases and workflows
 phases are dynamic and have goals

 workflows are static and are technical activities that are not

 associated with a single phase

recognition that deploying software in the
user environment is part of the process

33
Dr. Petru Florin Mihancea

3
Agile Methods

34

Dr. Petru Florin Mihancea

80’s - early 90‘s vision

the best way to achieve better software is through
careful planning, formalized quality assurance, the
use of analysis methods of CASE tools and
controlled and rigorous software development
processes

this view came from communities developing

large, longed-lived, critical systems

with geographically dispersed teams, very long development time

e.g. 10 years from specification to deployment for modern aircraft software

Significant overhead (but necessary for

such systems) appears due to intense

planning, design, documentation, etc.

The Beginning

35
Dr. Petru Florin Mihancea

The Problem - Dissatisfaction

for small and medium sized business software the
overhead became so large that it sometimes
dominated the development process

Proposed solution

 the agile methods developed in the 90’s

 allow teams to focus on the software itself rather on design and

 documents

36

Dr. Petru Florin Mihancea

Agile Manifesto

http://agilemanifesto.org/

37
Dr. Petru Florin Mihancea

Principles
1. People not processes

The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive process

2. Incremental delivery
Software is delivered (rapidly) in increments with the customer
specifying the requirements to be included in each increment

3. Customer involvement
Closely involved in the development, providing new and
prioritizing requirements and evaluate each iteration

4. Embrace change
Expect the requirements to change (even in case of rapid changes
during development or very late changes)

5. Maintain simplicity
Focus on simplicity in software and process; work to eliminate
complexity from the system

38

Dr. Petru Florin Mihancea

Difficulties

The need of a customer who is willing and able to spend time with
the development team

Prioritizing changes can be difficult

Maintaining simplicity requires extra work

Contractual problems - the customer pays for the time required for
development and not for a specific set of requirements

When ?
probably best suited for small to medium sized
software (without critical aspects that may affect security and
safety and thus, requiring a previous detail analysis of all the
requirements)

39
Dr. Petru Florin Mihancea

A
Extreme Programming (XP)

40

Dr. Petru Florin Mihancea

Basics

Pushes good practices (e.g. iterative delivery)
and customer involvement to “extreme”

new versions may be built several times a day

increments are delivered to customer roughly every 2 weeks

all tests must be run for every build and must be successful;
only in that case the build is accepted

41
Dr. Petru Florin Mihancea

Story Card

The form in which requirements are captured; it
encapsulates a customer’s need from the system
(usually in terms of an interaction scenario with the system)

Summerville - Software Engineering

42

Dr. Petru Florin Mihancea

Practices (A)
1. On-Site Customer

A representative of the end user should be available full time for the
use of XP team (thus it is actually a member of the team) responsible
for defining acceptance tests, involved in specifying and in prioritizing
requirements (i.e. various story cards)

2. Incremental planning
The stories developed in a particular release are determined /
selected based on the time available and story priorities

3. Small releases
The minimum set of functionalities providing useful value from the
system is developed first; following releases are frequent and add
functionality to the first/previous release

As requirements change,

unimplemented story cards may

change or may be discarded; more

over, new cards may appear and re-

prioritization may occur

43
Dr. Petru Florin Mihancea

A more detailed story card

44

Dr. Petru Florin Mihancea

A story is split into tasks

Summerville - Software Engineering

45
Dr. Petru Florin Mihancea

XP Release Cycle

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test software

Summerville - Software Engineering

46

Dr. Petru Florin Mihancea

Practices (B)

4. Simple design
Enough design is performed in order to meet the current
requirements and no more - e.g via UML in sketch mode :)

5. Refactoring
Frequent code change tends to degrade the internal structure of the
application

Consequently all developer are expected to refactor/reorganize the
code asap when the possibility of improvement is found; thus the
code should remain simple and maintainable

6. Test-first development
An automated unit test framework is used to write tests for a new
piece of functionality before that functionality is implemented

47
Dr. Petru Florin Mihancea

Testing in XP

Since we do not have a full system specification
an external team cannot develop system tests

To overcome this issue

A. Test first-development
Writing tests first defines the interface and the specification of the
behavior that is going to be implemented

Can help clarify requirements i.e. in order to write a test you must
clearly understand the specification

Avoids the tendency to skip testing in order to maintain the schedule

B. Incremental test development from scenarios
Stories are split into tasks each of which represents a single feature of
the system; unit tests can be derived then for each task

48

Dr. Petru Florin Mihancea

Example

Summerville - Software Engineering

Summerville - Software Engineering

49
Dr. Petru Florin Mihancea

Testing in XP (2)

C. User involvement in test development and
validation
The user must help to produce the acceptance tests i.e. tests with user
data to check that the application meets the user stories

D. Automated testing mechanisms
Usually, a test will be an executable component simulating the
submission of the inputs to the tested entity and checks that the output
meets the entity specification

Whenever a new functionality is added, the tests can be run quickly and
problems introduced by the new code can be caught immediately

Difficulties
Many programmers do not like writing tests

Some tests might be extremely difficult to write before the system is
implemented

The user commitment to the tests development (how do we know that
her tests are sufficiently complete ?)

50

Dr. Petru Florin Mihancea

Practices (C)

7. Pair Programming
Very simple, programmers work in pairs; they actually sit together at
the same workstation :)

8. Collective ownership
The pairs work in all areas of the system; all the developers own all
the code; anyone can change anything; no islands of expertise
develop

9. Sustainable pace
Large amounts of overtime are not acceptable

51
Dr. Petru Florin Mihancea

Advantages of Pair Programming

Supports the idea of common code ownership
The code is owned by the team as a whole

Individuals are not responsible for problems, the entire team is
responsible

It acts as an informal review process
Each line of code is looked at by at least two people

Not as good as a formal review process, but cheaper and faster

Support for refactoring/restructuring
Restructuring is a long term investment and takes time; thus, an
individual practicing refactoring might be seen as less efficient

Due to pair programming and common code, everybody gains from
refactoring and it is more likely to support the process

52

Dr. Petru Florin Mihancea

Isn’t this a waste of resources ?

There is some evidence that productivity of pair
programming is comparable with that of two
people working independently

NO!

The pair members discuss various solutions so they might have fewer
“false starts” and thus, less rework

Errors might be avoided because of the informal review of the code

53
Dr. Petru Florin Mihancea

Practices (D)

10. Continuos Integration
As soon as the work on a task is completed it is integrated into the
whole system; after any such integration, all the unit tests must pass

Keeps the team in sync avoiding painful integration cycles

To achieve this:
The entire building of the application (i.e. compiling, copying
resource files into place, etc.) should be an automatic process (and
ideally, should be fast)

Automated testing mechanism are required

The developers must be announced immediately when some tests
fail (e.g. via email)

There are dedicated CASE tools to

support continuos integration

54

Dr. Petru Florin Mihancea

B
SCRUM

http://en.wikipedia.org/wiki/File:Scrum-1.JPG

55
Dr. Petru Florin Mihancea

SCRUM

P. Deemer, G. Benefield - Scrum Primer Version 1.2

Iterative & incremental agile process
the cycles are named sprints and are timeboxed

56

Dr. Petru Florin Mihancea

RolesProduct Owner
One person

Identifies product features, prioritize them, decides which of them
must be in the top of the list for the next sprint, and continuously re-
prioritize and refine the list

Prioritization must be made to maximize the “profit” (e.g. revenues,
highest-value-lowest-cost features, satisfy important clients, etc.)

Sometimes may be directly the customer (for internal applications)

The Team
7 (+/- 2) people

Builds the product indicated by the Product Owner

100% dedicated to one product during a sprint (avoid multiple-
project involvement)

Cross-Functional - includes all the necessary expertise (analysis,
development, testing, database design, etc.)

Multi-skilled members (but they not have to be all generalists)

Self-Organizing - the team decides what to commit to in a sprint and
how to accomplish that commitment

57
Dr. Petru Florin Mihancea

Roles (2)
Scrum Master

He is not the manager of the team (e.g., does not tell people what to
do, does not assign tasks, etc.)

Helps the group learn, apply and reinforce Scrum rules
(e.g, pushback the Product Owner if he tries to add new deliverables
in the middle of a sprint)

May be an active member of the Team (in the case of small teams)
but cannot be the Product Owner

58

Dr. Petru Florin Mihancea

Entering Scrum

P. Deemer, G. Benefield - Scrum Primer Version 1.2

Product Owner constructs and continuously
updates a prioritized list of items called the
Product Backlog

Item
• (new) customer features
• engineering improvements goals (e.g., solve a
scalability issue)
• known defects

Items are usually expressed using use cases or user
stories

The subset of items intended to be solved for a
particular release of the product forms the Release
Backlog

59
Dr. Petru Florin Mihancea

Entering Scrum

P. Deemer, G. Benefield - Scrum Primer Version 1.2

Product Owner (sometimes
helped by the ScrumMaster)

 sets the value of an item

Team provides an
estimate of the effort to

solve the item

Product Owner sets priorities
e.g., highest-value-lowest-cost

No recipe for estimation

Estimate in terms of relative size using

a “point” as unit

After several sprints the Team can find

how much can do in a sprint

(e.g., 26 points/sprint)

When stable this is the team velocity

59

Dr. Petru Florin Mihancea

Sprint Planning Meeting

P. Deemer, G. Benefield - Scrum Primer Version 1.2

Part 1
Product Owner + Team
• review highest-priority items in
Product Backlog (e.g., goal, context, etc.)

Part 2
Team (Product Owner is not required)
• selects the items that the team
commits to complete by the end of the
sprint (starting from the top of the Product Backlog)
• the Team may lobby for a particular
low-priority item when it fits easily with
a high-priority one
• based on estimating the available
working hours (e.g., usually 4-6 h / day / member
for sprint related-work, but also must consider
vacations, etc.)
• based on discussing/designing/etc. the
top items, the Team breaks them into
tasks for each of which it estimates the
required time to complete

60
Dr. Petru Florin Mihancea

The Sprint Backlog

NO item is added to the Sprint Backlog during the sprint

 Positive influence of the Team feeling protected, knowing exactly its objectives

 Product Owner is really thinking on the item prioritization and knows what

 the Team committed to do

 Product Owner can work on updating the remaining of the Product Backlog

People volunteer for tasks one at a time, when it is time to pick a
new one

The task status should be marked: Not started, In Progress, Completed

P. Deemer, G. Benefield - Scrum Primer Version 1.2

You can hang it on a wall using Post-It

for tasks and use different columns to

mark progress

61

Dr. Petru Florin Mihancea

Sprint - Daily Scrum

P. Deemer, G. Benefield - Scrum Primer Version 1.2

15 minutes daily meeting -
each member is standing and
reports:

1) What I get done from the
last meeting ?
2) What I try to finish by the
next meeting ?
3) Found impediments

• opportunity for
synchronization, self-
coordination and obstacle
report

• ScrumMaster must react to
blocking situations to try to
solve them (e.g., maybe during
a follow-up meeting)

62
Dr. Petru Florin Mihancea

P. Deemer, G. Benefield - Scrum Primer Version 1.2

Sprint - Updating Sprint Backlog

Each day, members
estimate the

amount of time until the
task is doneSprint

Burndown Chart

P. Deemer, G. Benefield - Scrum Primer Version 1.2

The Team can easily observe
if the goal of the sprint can be met in
the remaining time or adjustments are
required (e.g., slip functionality)

63

Dr. Petru Florin Mihancea

Sprint - Other elements

P. Deemer, G. Benefield - Scrum Primer Version 1.2

5-10% of the
sprint, the Team should

refine the Product Backlog with
the Product Owner (e.g., a

workshop near the end of the
sprint): requirements analysis,

(re)estimations, items
splitting, details, etc.

64
Dr. Petru Florin Mihancea

Sprint - Other elements

P. Deemer, G. Benefield - Scrum Primer Version 1.2

At the
end of a sprint, an inspect and adapt

activity for the product:
Product Owner + Team + ScrumMaster

a) Product Owner - learns about the product
(includes a demo)

b) The Team learns about the market
c) The ScrumMaster prevents the demoing of what
has not been fully achieved; those items go back to

Product Backlog

64

Dr. Petru Florin Mihancea

Sprint - Other elements

P. Deemer, G. Benefield - Scrum Primer Version 1.2

At the end of a sprint, an
inspect and adapt activity for the

process:
The Team + Scrum Master discuss what is working

and what is not working and try changes;
each member states “What’s Working Well”

and “What Could be Better”; common
observations are discussed to find

causes and solutions

64
Dr. Petru Florin Mihancea

Other elements
The product must be shippable at the end of
each sprint

In practice
• An actual release will contain more items (i.e., Release
Backlog Items) developed in several sprints

• The Release Backlog must be maintained in a similar
manner like the Sprint Backlog, together with a Release
Burndown Chart

• A final release sprint might be required before a release
• Perfect vision of shippable product after each sprint is hard to achieve

• Will contain final integration testing, etc.

• Continuos refactoring, integration and effective testing in each sprint should reduce
the necessity of such an iteration

65

