Software Development
Processes

Dr. Petru Florin Mihancea

Based on:

I ille - Software Engineering 8, Ch. 4 Software Processes,
Ch. 17. Rapid Software Development

R. Pressman - Software Engineering, Ch. 2 The Process

M. Fowler - UML Distilled, Ch2. Development Process

P. Deemer & G. Benefield - SCRUM Primer

Software (Development) Process

A software process is a set of activities and
associated results that produce a software

product

Fundamental activities:

1. Software specification

defining the software to be produced

2. Software development

designing and programming

3. Software validation

checking to ensure that it is what the customer required

4. Software evolution

modification to adapt to customer / market requirements

A software process model = a simplified representation of a process

Generic Models

1. Waterfall

separate steps/phases for specification, design, etc.

2. Iterative/Evolutionary
interleaves specification, development, validation activities, etc.

fast development of an initial system and refine it with the
customer

3. Component-based software engineering

process focuses the integration of reusable components in order

to build the software

Waterfall

breaks down the
project based on activity

eg,
2-months analysis phase
followed by

4-months design phase

followed by

3-months coding phase

followed by

3-months testing phase

The main contrast

Iterative/
VvS. .
Evolutionary

usually, breaks down the
project by subsets of
functionality

e.g., 3 iterations

I'st iteration takes |/4 of
requirements and perform
analysis,design, code, test;
when iteration ends, we have a
system doing 1/4 of all needed
functionality

2nd iteration takes 1/4 of
requirements and etc.

Waterfall model

Together
with users, identify services,
constraints, goals; next, define

them in detail !
Requirements
definition
System and
software design

Implementation
and unit testing
Integration and
system testing

Waterfall model

([Operation and

maintenance

Summerville - Software Engineering

Waterfall model

Partition in HW and
SW requirements, and identify
the basic software abstractions
and their relationships

Requirements
definition

System and

software design

Implementation

and unit testing

Integration and

system testing

(Operation and

maintenance

Summervile - Software Engineering

Requirements
definition
System and
software design

Implementation
and unit testing

Waterfall model

The design in
“realized” as a set of program
units (e.g. methods/classes); next,
unit testing checks that each unit
meets its specification

Integration and
system testing

mon and

maintenance

Summervile - Software Engi

Waterfall model

Requirements
definition
System and

software design

Implementation

and unit testing

Integration and

system testing

([Operation and

maintenance

Individual units are put
together and tested as a
complete system to ensure
software requirements have
been met

Summerville - Software Engineering

Waterfall model

Requirements
definition
System and
software design
Implementation
and unit testing
Integration and
system testing
(Operation and)
. int
The software is put fmaintenance

into practice. Maintenance involves T
correcting errors, improving
implementation, and adapting to
new requirements

Waterfall model

In principle:
+ a phase starts only after the
previous ends

Requirements + a phase ends by producing
definition documents that are approved
(signed off) and frozen
System and
software design
Implementation
and unit testing
Integration and
system testing

(Operation and

maintenance

In practice:

+ these stages overlap a little Summervile - Sofowars Engineering
and feed information to each

other but still, after a short time,

the previous phase is frozen

Dr. Peru Florin Mih

Pros/Cons

Pros

Documentation is produced at each phase

Cons
inflexible partitioning of the project into distinct stages
premature “freezing” is dangerous during:

requirements - it is not easy for a customer to
explicitly state all the requirements;
the software won’t do what the user wants

design - leads to bad design and the flaws will be eliminated

via programing hacks

commitments (frozen decisions) made at an early stage
make very difficult to respond to changing customer
requirements

customer must have patience - a working version comes late
in the project time-span

When to use?

OHIYwhen

requirements are well understood
and unlikely to radically change during

Iterative/Evolutionary models

development
eS °°*° ° °
maamem‘ £yP© Basic idea
TwWo /
. Concurrent
activities

o Initial
Specification version

Outline ——> | Intermediate
descripti — Development versions
escription <

o Final
Validation — version

... develop an initial implementation,
exposing this to the user and refine it
through many versions until an adequate
system has been developed

Throwaway prototyping

The objective is to understand the customer’s
requirements and hence develop a better
requirements definition

+ developer and customer

meet and define the overall

B“':gﬁ:";“ objectives of software,
identify whatever

requirements are known

Listen to
customer

+ a quick design occur
focusing those aspects visible
to the user

* a prototype is built that is
then evaluated by the
customer to refine
requirements, enabling

M\ developer to better
Pressman - ofowar Engncering understand the requirements

Customer
test drives
mock-up

The Danger

Both user and developer like the approach
users get quickly a feel of the actual system
developers get to build something immediately

But eee

the users see a “working” version that is held together “with chewing gum
and baling wire”; DO NOT transform the prototype into a product by
applying “a few fixes” as the customer will beg :)

the developer will make implementation compromises, will neglect long-
term maintainability, etc. only to get fast a working prototype

after a while a developer might forget the reason for which some design/

implementation decisions were inappropriate and make them part of the
system

Exploratory development

The objective of this type of processes is to work with

the customer to explore their requirements and deliver a
final system

start with the parts that are well understood
the system evolves by adding new features proposed by the customer

Pros
specification can be developed incrementally

producing systems that meet immediate needs

Cons
the process is not so visible (from a managerial perspective)
higher risk of poor structure (because of continuos change)

The Danger

Both user and developer like the approach
users get quickly a feel of the actual system
developers get to build something immediately

But oo

the users see a “working” version that is held together “with chewing gum
and baling wire”; DO NOT transform the prototype into a product by
applying “a few fixes” as the customer will beg :)

the developer will make implementation compromises, will neglect long-

term maintainability, etc. only to get fast a working prototype e
after a while a developer might forget the reason f~- the pfoto‘:'zx\
implementation decisions were inappror*-- tate tnat ‘,\.‘ec‘.\'\a"“_t is

J c\ear\Y: cerve 2° :me\‘\"s e ¥
Tisbul t'n'm eaW\™ 4 "‘“°ﬂ-‘$d the
for &N carded 24 to bW
en e W
th i b‘ soﬂware

Exploratory development

The objective of this type of processes is to work with

the customer to explore their requirements and deliver a
final system

start with the parts that are well understood
the system evolves by adding new features proposed by the customer

Pros
specification can be developed incrementally

producing systems that meet immediate needs

Cons
the process is not so visible (from a managerial perspect:- "~ ode\sl

higher risk of poor structure (because of -~
/

Incremental Delivery

Incremental Delivery

Customers identify in
outline the services provided
by the system; usually they
classify them as more/less
important

Define outline Assign requirements Design system Develop system
requirements to increments architecture increment

System
incomplete?
Validate Integrate Validate Deploy
increment increment system increment
System
?
Y complete?
Final
system

Summerville - Sofoware Engineering

orin Mihancea

Incremental Delivery

“Split the requirements” into a set of
increments each one providing a sub-set
of the entire functionality

V

Define outline Assign requirements Design system Develop system
requirements to increments architecture increment

{ System
incomplete?
Validate Integrate Validate Deploy
increment increment system increment
System

v complete?

Final
system

Summerville - Sofoware Engineering

Incremental Delivery

Select increment (based on priorities), detail
requirements and develop it; meanwhile, further
requirements analysis can take for future increments
(changes in the current increment are not allowed)

Define outline Assign requirements Design system Develop system
requirements to increments architecture increment
‘ 1

System
incomplete?
Validate Integrate Validate Deploy
increment increment system increment
System
?
Y complete?
Final
system

Summerville - Sofoware Engineering

Incremental Delivery

Define outline Assign requirements Design system Develop system
requirements to increments architecture increment

System
incomplete?
Validate Integrate Validate Deploy
increment increment system increment
System

Y complete?

Incremental Delivery

Provides an high-level design of
the system,; it should be considered at the
beginning of the process in order to reduce
the degradation caused by adding
increments

A\

Define outline
requirements

Validate
increment

Assign requirements Design system Develop system
to increments architecture increment

System
incomplete?

Integrate Validate Deploy
increment system increment

System
Y complete?

Final
system

We “install the Final
system” (having only a part of system
its functionality); thus, the user e - Scfo
can offer feedback (e.g. clarify
requirements)
16
Pros

Can cope with requirements changes

Customers do not have to wait
the increments from the beginning of the process can contain the

most important functionality and it can be used by the users

The customer is directly involved
due to user feedback:
more likely to meet the desired requirements

new requirements can be discovered / better refinement

Since increments with higher priority are
delivered first

the most important functionality receives the most testing

Cons

Management problems

they like processes that generate regular deliverables to assess
progress; it may not be time effective to write documents for very
fast iterations

Contractual problems

usually based on specifications; it may be difficult to design a
contract where requirements are not fully defined from the
beginning

Validation problems

due to minimizing documentation and iterative specification, how
do we validate the system?

Maintenance

continual change tends to degrade the structure of the system; thus
special actions must be considered during development to avoid
degradation

Difficulties

Rework issues

due to modifications, redesign / deletion (in later iterations) of
some code might be seen as a waste; but it is better than having
poorly designed / patched code

A set of basic functionalities are common for
different parts of the system

it may be difficult to identify them since requirements are not
described in detail

Increments should be small and should
deliver some functionality

it can be difficult to map requirements onto increment of the right
size

Solution for the increment length

Time boxing

iterations must be of a fixed length of time :)

if you can’t build all you intended to build in an iteration
... slip some functionality from the iteration and
DO NOT SLIP THE DATE of the iteration

good exercise for learning about requirements prioritization

When NOT appropriate ?

extremely large systems where teams are working in different
locations

embedded systems where software depends on hardware
development

extremely critical systems where all requirements must be analyzed
to be able to check for interactions that may compromise safety,
security and other critical issues

20

Spiral Model

ot‘{"‘
of PYOT ts of
‘.at_'\‘l na' "eemaﬂca Pfap'\d
s 3 and SYSEC ar foX
/' comdi™ o tro\\e ides pote \ verswt\
with ':'::f anand P incr
a
\0!
deve

22

Dr. Petru Florin Mihancea

Spiral Model

Planning

Customer Risk analysis

communication

Project entry
point axis

.
.
‘\
.
.
N
.
Customer ~ — —df ™ _ %
evaluation Construction & release el 5
. '
. g
. '
.
I: Product maintenance projects S
v
I I Product enh projects L
v
- New product development projects 3to6

- Concept development projects task regions

Pressman - Software Engineering

Dr. Petru Florin Mihancea

Tasks required to
define resources,
timelines, etc.

Spiral Model

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

Customer
evaluation

: Product maintenance projects
I:I Product enhancement projects
- New product development projects
- Concept development projects

Construction & release

Pressman - Software Engineering

Tasks
required to establish
effective communications
with the customer

Spiral Model

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

Customer

evaluation Construction & release

:l Product maintenance projects
: Product enhancement projects
- New product development projects
- Concept development projects

Pressman - Software Engineering

[

Dr.Pecru Florin Mihancea
23
Spiral Model
Tasks required to
Planning assess risks.This is a
Customer Risk analysis distinguishing
communication characteristic of the spiral
) model. For requirements
Project entry isk b
point axis risks, prototypes may be
constructed
R
Engineering
Customer
evaluation Construction & release
: Product maintenance projects
: Product enhancement projects
- New product development projects
- Concept development projects Pressman - Software Engineering
Petru Florin Mihance

23

Spiral Model

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

Tasks required to build
one or more
representations of the
application

Customer
evaluation

l:] Product maintenance projects
I_l Product enh projects
- New product development projects
- Concept development projects Pressman - Software Enginering

Construction & release

Dr. Petru Florin Mihancea

Spiral Model

Planning

Customer Risk analysis

communication

Project entry
point axis

- Engineering
Tasks required

to obtain the customer
feedback based on the
software representation
previously built

evaluation

Construction & release

Product maintenance projects

I:I Product enhancement projects
- New product development projects
- Concept development projects Pressmman - Software Engineering

Dr. Petru Florin Mihancea

Spiral Model

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

Customer
evaluation

:l Product maintenance projects
: Product enhancement projects
- New product development projects
- Concept development projects

Construction & release

Tasks required to
construct, test, install

Dr. Petru Florin Mihancea

23

Spiral Model - View |

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

+ the first circuit might result

Conswﬂi;;‘.& release N the development of a
“--.5 product specification

* next ones, progressively

more sophisticated versions

Customer
evaluation

: Product maintenance projects

: Product enhancement projects .
— [—— A + each pass through a region

lew product development projects activates the specific tasks
- Concept development projects Pressman - Software Engineering

Dr. Petru Florin Mihancea

24

Spiral Model - View 2

Each cube can be used to
represent the starting point
for different kinds of projects

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

Customer
evaluation

Spiral Model - View 2

Each cube can be used to
represent the starting point
for different kinds of projects

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

It may be decided to
Customer " « -
ahaney Conditbe e :transform the “concept” into
,+ aproduct, and thus a new
K)
:l Product maintenance projects 'o‘ Pr.OdUCt p'r‘OIEFt Starts
) . (having multiple iterations)
I:l Product enhancement projects P
: New product development projects € ===~ -
- Concept development projects Pressrman - Software Enginesring
And so on, e.g. where a change is initiated, the \
! . dto apP Y are
process starts at the appropriate entry point te softW
pe adaPtele of
e.g. product enhancement Ca“the entire
S enroug”

'
' . .
I:] Product maintenance projects H In several iterations
(] Prociuct enh - ,+ we develop a “concept”
.
- New product development projects "'
.
- Concept development projects .. ______. =™ Pressman - Sofeware Enginesring
L
ipsoftwa'e
canbe? ire \if
the
throud
25

Pros

explicitly consider risks and uses prototyping as a risk reduction
mechanism (at any stage in the evolution of the product)

maintains the systematic stepwise approach suggested by the classic
life-cycle, but integrates it into an iterative framework

Cons

might be difficult to convince customers that the evolutionary
approach is controllable (especially in contract situations)

considerable risk assessment expertise

the model has not been as widely used as other approaches, so
difficult to discuss about its success :(

25

Rational Unified Process

27

Dynamic perspective

The phases of the process model over time

< Phase iteration

C | s o

Inception Elaboration Construction Transition
Summerville - Sofoware Engincering

e
/ someho‘“’ut e N E oncern®

Dynamic perspective

The phases of the process model over time

< Phase iteration
C | o

Inception Elaboration Construction Transition

Understand the
problem domain, establish an
architectural framework, and the
project plan, identify risks. At the end we
must have: requirements model,
architectural description,
development plan

Dynamic perspective

The phases of the process model over time

(Phase iteration
C_ | s o

Inception Elaboration Construction Transition

Summervile - Sofeware Engineering

Establish business use
cases for the system. ldentify
external entities (people, other systems)
that interact with the system. Next, assess
the contribution of the system to the
business (should we
continue?)

28

Dynamic perspective

The phases of the process model over time

(Phase iteration
C > o

Inception Elaboration Construction Transition

System design,
programming and testing. Parts of
the system are developed in parallel and
integrated during this phase. At the end,
we must have the working system +
documentation.

28

Dynamic perspective

The phases of the process model over time

(Phase iteration
C = — .

Inception Elaboration Construction Transition

“Move” the system from th}

developer community to the user
community and make it work in the real
environment (this is something omitted b
other models). At the end: documented
and working system in the actual
working environment

h UMb (

ions W
ng connec™®
stro

Static perspective (1)

The activities (hamed workflows)

Workflow Description

Business modelling iness processes are modelled using business
use cases

Actors|who interact with the system are identified and
use cases| are developed to model the system

requirements.

Requirements

i| Analysis and design A design model is created and documented using |}
rchitectural models, component models, object
odels and sequence models.
Implementation The components in the system are implemented and

structured into implementation sub-systems.
Automatic code generation from design models helps
accelerate this process.

Dynamic perspective

The phases of the process model over time

(Phase iteration
C o=/ — .

Inception Elaboration Construction Transition

Summervile - Software Engineering

28

Static perspective (2)

The activities (hamed workflows)

Workflow Description

Testing Testing is an iterative process that is carried out in conjunction
with implementation. System testing follows the completion of
the implementation.

A product release is created, distributed to users and installed in
their workplace.

Configuration and This supporting workflow managed changes to the system (see'
change management Chapter 25). |
Project management | This supporting workflow manages the system development (see

| Chapters 22 and 23).

This workflow is concerned with making appropriate software
tools available to the software development team.

Deployment

Environment

Summervile - Software Engineering

30

DISCIPLINES

BUSINESS MODELLING

REQUIREMENTS

ANALYSIS & DESIGN

IMPLEMENTATION

TEST

A combined perspective

\

| \

P —)
|

Inception [’ Elaboration " Construction H Transition ‘

/—*—\——ﬂ‘/\N
|
W
1 1 I
—
e)

DEPLOYMENT | __4____‘-
CONFIGURATION & CHANGE MANAGEMENT
PROJECT MANAGEMENT —,TlAAT‘“TA—

ENVIRONMENT e e T‘N ‘A

=] i
| | |
| |

Elab #1 | | Elab #2 | ||const#1] |Const #2| |Const#3||| Tran #1 | | Tran #2

‘ Initial

Practice perspective

Good practices to be used during RUP

Develop software iteratively
plan increments based on customer priorities and

deliver highest priority increments first

Manage requirements
explicitly document user requirements (we will see use cases)

and keep track of changes

Visually model software

UML e.g. class diagrams, sequence diagrams curess
nitec
ed Y€ S.
o“e“t-cm:\stro\ cnang®
0!

. comPO

Innovations

separation of phases and workflows
phases are dynamic and have goals
workflows are static and are technical activities that are not

associated with a single phase

recognition that deploying software in the
user environment is part of the process

32

Agile Methods

34

The Beginning

80’s - early 90‘s vision

the best way to achieve better software is through
careful planning, formalized quality assurance, the
use of analysis methods of CASE tools and
controlled and rigorous software development
processes

this view came from communities developing

large, longed-lived, critical systems
with geographically dispersed teams, very long development time
e.g. 10 years from specification to deployment for modern aircraft softwar~

sS
¢ necs

. over cad (:ud\.\e to int
/ cionificd™ ea¥ ati
S\g‘“ﬂ te\‘\‘\s) appdocume“t/,

such sySg‘ desig™

plan™

The Problem - Dissatisfaction

for small and medium sized business software the

overhead became so large that it sometimes
dominated the development process

Proposed solution

the agile methods developed in the 90’s
allow teams to focus on the software itself rather on design and

documents

36

Agile Manifesto

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Principles

I. People not processes

The skills of the development team should be recognized and
exploited. Team members should be left to develop their own
ways of working without prescriptive process

2. Incremental delivery

Software is delivered (rapidly) in increments with the customer
specifying the requirements to be included in each increment

3. Customer involvement

Closely involved in the development, providing new and
prioritizing requirements and evaluate each iteration

4. Embrace change

Expect the requirements to change (even in case of rapid changes

during development or very late changes)

5. Maintain simplicity

Focus on simplicity in software and process; work to eliminate
complexity from the system

38

Difficulties

The need of a customer who is willing and able to spend time with
the development team

Prioritizing changes can be difficult
Maintaining simplicity requires extra work

Contractual problems - the customer pays for the time required for
development and not for a specific set of requirements

When?

probably best suited for small to medium sized
software (without critical aspects that may affect security and
safety and thus, requiring a previous detail analysis of all the
requirements)

Extreme Programming (XP)

40

Basics

Pushes good practices (e.g. iterative delivery)
and customer involvement to “extreme”

new versions may be built several times a day
increments are delivered to customer roughly every 2 weeks

all tests must be run for every build and must be successful;
only in that case the build is accepted

Story Card

The form in which requirements are captured; it

encapsulates a customer’s need from the system
(usually in terms of an interaction scenario with the system)

Downloading and printing an article

First, you select the article that you want from a displayed list. You
then have to tell the system how you will pay for it—this can either
be through a subscription, though a company account or by credit
card.

After this, you get a copyright form from the system to fill in. When
you have submitted this, the article you want is downloaded onto
your computer.

You then choose a printer and a copy of the article is printed. You
tell the system printing has been successful.

If the article is a print-only article, you can't keep the PDF version,
50 it is automatically deleted from your computer.

42

Practices (A)

1. On-Site Customer

A representative of the end user should be available full time for the
use of XP team (thus it is actually a member of the team) responsible
for defining acceptance tests, involved in specifying and in prioritizing
requirements (i.e. various story cards)

2. Incremental planning

The stories developed in a particular release are determined /
selected based on the time available and story priorities

3. Small releases

The minimum set of functionalities providing useful value from the
system is developed first; following releases are frequent and add
functionality to the first/previous release

A more detailed story card

Dat Type of Activity: New [_] Fix[_] Enhance [] FunctTesting[]
Story Nr Priority: User Technical
Risk Technical Estmate

Story Name
Story Description:
Notes
Task Tracing

Date Status ToDo Comments

44

A story is split into tasks

Task 1: Implement principal work flow

Task 2: Implement article catalog and selection

Task 3: Implement payment collection

Payment may be made in 3 different ways. The user
selects which way they wish to pay. If the user

has a library subscription, then they can input the
subscriber key which should be checked by the
system. Alternatively, they can input an organizational
account number. If this is valid, a debit of the cost

of the article is posted to this account. Finally, they
may input a 16 digit credit card number and expiry
date. This should be checked for validity and, if

1 valid a debit is posted to that credit card account.

XP Release Cycle

Select user
stories for this
release

Evaluate
system

Break down
; Plan release
stories to tasks

Develop/integrate/
test software

Release
software

46

Practices (B)

4. Simple design

Enough design is performed in order to meet the current
requirements and no more - e.g via UML in sketch mode :)

5. Refactoring

Frequent code change tends to degrade the internal structure of the
application

Consequently all developer are expected to refactor/reorganize the
code asap when the possibility of improvement is found; thus the
code should remain simple and maintainable

6. Test-first development

An automated unit test framework is used to write tests for a new
piece of functionality before that functionality is implemented

Testing in XP

Since we do not have a full system specification
an external team cannot develop system tests

To overcome this issue

A. Test first-development

Writing tests first defines the interface and the specification of the
behavior that is going to be implemented

Can help clarify requirements i.e. in order to write a test you must
clearly understand the specification

Avoids the tendency to skip testing in order to maintain the schedule

B. Incremental test development from scenarios

Stories are split into tasks each of which represents a single feature of
the system; unit tests can be derived then for each task

47

48

Task 1: Implement principal work flow ! Example

Task 2: Implement article catalog and selection 1

Task 3: Implement payment collection

Payment may be made in 3 different ways. The user
selects which way they wish to pay. If the user

has a library subscription, then they can input the
subscriber key which should be checked by the
system. Alternatively, they can input an organizational
account number. If this is valid, a debit of the cost

of the article is posted to this account. Finally, they
may input a 16 digit credit card number and expiry
date. This should be checked for validity and, if

1 valid a debit is posted to that credit card account.

Test 4: Test credit card validity

Input:

A string representing the credit card number and two integers
representing the month and year when the card expires
Tests:

Check that all bytes in the string are digits

Check that the month lies between 1 and 12 and the

year is greater than or equal to the current year.

Using the first 4 digits of the credit card number,

check that the card issuer is valid by looking up the

card issuer table. Check credit card validity by submitting the
card number and expire date information to the card issuer
Output:

OK or error message indicating that the card is invalid

Testing in XP (2)

C. User involvement in test development and
validation

The user must help to produce the acceptance tests i.e. tests with user
data to check that the application meets the user stories

D. Automated testing mechanisms

Usually, a test will be an executable component simulating the
submission of the inputs to the tested entity and checks that the output
meets the entity specification

Whenever a new functionality is added, the tests can be run quickly and
problems introduced by the new code can be caught immediately

Difficulties

Many programmers do not like writing tests

Some tests might be extremely difficult to write before the system is
implemented

The user commitment to the tests development (how do we know that
her tests are sufficiently complete ?)

50

Practices (C)

7. Pair Programming

Very simple, programmers work in pairs; they actually sit together at
the same workstation)

8. Collective ownership

The pairs work in all areas of the system; all the developers own all
the code; anyone can change anything; no islands of expertise
develop

9. Sustainable pace

Large amounts of overtime are not acceptable

Advantages of Pair Programming

Supports the idea of common code ownership
The code is owned by the team as a whole

Individuals are not responsible for problems, the entire team is
responsible

It acts as an informal review process
Each line of code is looked at by at least two people

Not as good as a formal review process, but cheaper and faster

Support for refactoring/restructuring

Restructuring is a long term investment and takes time; thus, an
individual practicing refactoring might be seen as less efficient

Due to pair programming and common code, everybody gains from
refactoring and it is more likely to support the process

Isn’t this a waste of resources ?

/ NO"

There is some evidence that productivity of pair
programming is comparable with that of two
people working independently

The pair members discuss various solutions so they might have fewer
“false starts” and thus, less rework

Errors might be avoided because of the informal review of the code

52

Practices (D)

10. Continuos Integration

As soon as the work on a task is completed it is integrated into the
whole system; after any such integration, all the unit tests must pass

Keeps the team in sync avoiding painful integration cycles

To achieve this:

The entire building of the application (i.e. compiling, copying
resource files into place, etc.) should be an automatic process (and
ideally, should be fast)

Automated testing mechanism are required
The developers must be announced immediately when some tests
fail (e.g. via email)
to
too\s
CASE jon
icated & o orath
) ere are ded:\‘;'mu“ weed
™ ort <© -

sup?P

54

 ScrumMaster N ﬁ“

Daily Scrum
Meeting and
Artifacts Update

ihififi

Review

) i

Potentially
No Changes Shippable Product

in Duration or Goal Increment

Input from End-Users,
Customers, Team and
Other Stakeholders

12
i

Product
Backlog
Refinement

Team Selects

How Much To
CommitTo Do
By Sprint’s End

Sprint Planning Sprint
Meeting Backlog

Product s tend "'i"'

Backlog Retrospective

Iterative & incremental agile process
the cycles are named sprints and are timeboxed

Product Owner

Roles

One person

Identifies product features, prioritize them, decides which of them
must be in the top of the list for the next sprint, and continuously re-
prioritize and refine the list

Prioritization must be made to maximize the “profit” (e.g. revenues,
highest-value-lowest-cost features, satisfy important clients, etc.)

Sometimes may be directly the customer (for internal applications)

The Team

7 (+/- 2) people
Builds the product indicated by the Product Owner

100% dedicated to one product during a sprint (avoid multiple-
project involvement)

Cross-Functional - includes all the necessary expertise (analysis,
development, testing, database design, etc.)

Multi-skilled members (but they not have to be all generalists)

Self-Organizing - the team decides what to commit to in a sprint and
how to accomplish that commitment

56

Roles (2)

Scrum Master

He is not the manager of the team (e.g., does not tell people what to
do, does not assign tasks, etc.)

Helps the group learn, apply and reinforce Scrum rules
(e.g, pushback the Product Owner if he tries to add new deliverables
in the middle of a sprint)

May be an active member of the Team (in the case of small teams)
but cannot be the Product Owner

58

TS
n Input from End-Users, f

Customers, Team and
Other Stakeholders

Wi

' Product Owner

Product
Backlog

| scalability issue)

Entering Scrum

Product Owner constructs and continuously
updates a prioritized list of items called the
Product Backlog

Item
* (new) customer features
* engineering improvements goals (e.g., solve a

* known defects

Items are usually expressed using use cases or user
stories

The subset of items intended to be solved for a
particular release of the product forms the Release
Backlog

Input from End-Users,
Customers, Team and
Other Stakeholders

Wi -

Sprint Planning Meeting

Part |
Product Owner + Team
* review highest-priority items in

brodw Product Backlog (e.g., goal, context, etc.)

Product

Part 2

Team (Product Owner is not required)

* selects the items that the team
commits to complete by the end of the
sprint (starting from the top of the Product Backlog)
+ the Team may lobby for a particular
low-priority item when it fits easily with
a high-priority one

* based on estimating the available
working hours (e.g., usually 4-6 h / day / member

tititit

Team

Team Selects
How Much To
CommitTo Do
By Sprint’s End

Sprint Planning
Meeting
(Parts 1 and 2)

Sprint
Backlog

Backlog ™

for sprint related-work, but also must consider
vacations, etc.)

* based on discussing/designhing/etc. the
top items, the Team breaks them into
tasks for each of which it estimates the
required time to complete

o WS
fof st c_\a‘l"' e °
0
T Ent S
wo 1o e o T o ncering scrum
o o e !
ate wpO! o
SO0 2 \‘;vf“‘ > a0\) ey
T e e A s/ svﬂa el
i\ PP
piee w;;_' 26 P cne ©© roduct Owner sets priorities
re .
o 562 e.g., highest-value-lowest-cost
ey it
: : N [
I A3
i Input from End-Users, .. New Estimates of Effort
{| Customers,Teamand | S Remaining as of Sprint...
Other Stakeholders A
Seell Details Initial
lll, TTSsfwikie Ly, | Estimate Estimateof
Item URL) Priority : ofValue : Effort 1 2:3:4:5:6
As buyer, T want to place a book in a shopping cart (see U
sketches on wiki page) 0 1 7 5
A a buyer, I want to remove a book in a shopping cart . 2 6 2
' Product Owner Improve transaction processing performance (see target
performance metrics on wiki) 3 6 13
Y {Investigate slutions fo speeding up credit card vaidabn (see
target performance metrics on wiki) . 4 6 2
Upgrade all servers to Apache 2.2.3 . H S 13
iDiagnose and fix the order processing script errors (bugzilla ID_
| 114823 . 6 2 H 3 H i
iAs a shopper, I want to create and save a wish list . 7 7.9 i i
iAs a shopper, I want to to add or delete items on my wish list ... 8 4 i i H
A A
—
UL
Product ! h
Backlog + Retfpspective
'
Der, @ Benef ‘ “ Prime
. .
. S

~

Team provides an
estimate of the effort to
solve the item

Product Owner (sometimes .-’
helped by the ScrumMaster)
sets the value of an item

59

s SPOSt-::
At °
ns
mgeon2ieowcow™™ ™ The Sprint Backlog
You can W d use av yess
sks AW K Prog New Estimates of Effort
fov ta ma Remaining as of Day...
Initial
= Estimate of
Product Backlog Item Sprint Task Volunteer Effort 1(2|3|4|5]|6
Imodify 5
lcreate webpage (Ul) 8
13

As a buyer, I want to place
a book in a shopping cart

Imerge DCP code and complete layer-level tests

Improve transaction

processing performance [complete machine order for pRank

—
NO item is added to the Sprint Backlog during the sprint

ichange DCP and reader to use pRank http API

Positive influence of the Team feeling protected, knowing exactly its objectives
Product Owner is really thinking on the item prioritization and knows what
the Team committed to do
Product Owner can work on updating the remaining of the Product Backlog
People volunteer for tasks one at a time, when it is time to pick a
new one
) The task status should be marked: Not started, In Progress, Completed

61

Sprint - Daily Scrum

=itk |

I5 minutes daily meeting -
each member is standing and

reports: ScrumMaster
Daily Scrum
1) What | get done from the Meeting and
Artifacts Update

last meeting ?

2) What I try to finish by the
next meeting ?

3) Found impediments

Review

) i

Potentially
No Changes Shippable Product

* opportunity for
synchronization, self-
coordination and obstacle

report in Duration or Goal Increment
« ScrumMaster must react to iiiiiii
blocking situations to try to Retrospective

solve them (e.g., maybe during
a follow-up meeting)

— S—

Sprint - Updating Sprint Backlog

New Estimates of Effort
Remaining at end of Day... |
Initial | | S
Estimate of .
Product Backlog Item | Sprint Task Volunteer Effort 1 2 3 4 5 6 .
modify database |Sanjay ! S 413701010} .
{create webpage (UI) Jing 3 3 3 2 00 .
As a buyer, [want to place a |create webpage (Javascript i0gic) |Tracy & Sam | 2 213211101 A
book in 2 shopping cart write automated acceptance tests Sarah 5 §1 S Ssis10 .
update buyer help webpage |Sanjay & Jing | 3 3133310} N
i \
R merge DCP code and complete layer-level tests | i 5 3 S O N .
nprove e oncorocessing | complete machine order or pRank 3 378888 .
change DCP and reader to use pRank http APL 1 | 5 L5818 1581 'Se1 81 [y
H
wesssismson H
50 49 48 44 43 34 N
.
: Each day, members
NS estimate the
P . .
{a curront sstmate of work amount of time until the
§ B &" *+ Sprint task is done
£ Burndown Chart
3
£
)
i
© The Team can easily observe
if the goal of the sprint can be met in
" & 7 & o be de % & 3 B the remaining time or adjustments are
o required (e.g., slip functionality)
»mew —

Sprint - Other elements

i -ﬁ“

5-10% of the
sprint, the Team should
refine the Product Backlog with
the Product Owner (e.g.,a
workshop near the end of the
sprint): requirements analysis,

(re)estimations, items Product Oy Seruon
Bg 4 Backlog Meeting and
SPllttmg, details, etc. Refinement Artifacts Update
Product Owner Team iiiiiii
Review
Team Selects
How Much To n
CommitTo Do
By Sprint’s End Potentially
- = - 'NO Changes Shippable Product
Sprint Planning Sprint in Duration or Goal Increment

Meeting Backlog

—-ad Piiiiii

Backlog Retrospective

63

Sprint - Other elements

ScrumMaster . ﬁ'ﬁ

Input from End-Users,

Daily S
Customers, Team and :;:::f; M:Ie:);n::r::
Other Stakeholders Refinement Artifacts Update

| i |

Review

end of a sprint, an inspect and adapt

activity for the product: ”
Product Owner + Team + ScrumMaster Potentially
a) Product Owner - learns about the product Sh'p.',’,:l,’lfn':'f,’fm
(includes a demo)
b) The Team learns about the market iiiiiii
c) The ScrumMaster prevents the demoing of what Retrospective

has not been fully achieved; those items go back to
Product Backlog

64

Sprint - Other elements

ScrumMaster . ﬁ'ﬁ

Input from End-Users,

Product Daily Scrum
Customers, Team and "
Other Stakeholders Backlog Mee!mg and
l l l Refinement Artifacts Update
Product Ownel ii'i'ii
Review
At the end of a sprint, an
inspect and adapt activity for the A -’
process: ges % Pot;lntipallo):’
The Team + Scrum Master discuss what is working Ippa e ot

r Goal Increment

and what is not working and try changes;
each member states “What's Working Well”
and “What Could be Better”; common
observations are discussed to find
causes and solutions

i

Retrospective

Other elements

The product must be shippable at the end of
each sprint

In practice

* An actual release will contain more items (i.e., Release
Backlog Items) developed in several sprints

* The Release Backlog must be maintained in a similar
manner like the Sprint Backlog, together with a Release
Burndown Chart

* A final release sprint might be required before a release
« Perfect vision of shippable product after each sprint is hard to achieve
« Will contain final integration testing, etc.

« Continuos refactoring, integration and effective testing in each sprint should reduce
the necessity of such an iteration

65

