
V20240219

Software Engineering Fundamentals

Dr. Petru Florin Mihancea

Introduction

Based on:
I. Sommerville - Software Engineering 8, Ch.1 Introduction
R. Pressman - Software Engineering, Ch. 1 The Product

Dr. Petru Florin Mihancea

1. What is Software Engineering ?

Dr. Petru Florin Mihancea

The beginning ...

The “software crisis” started in the 60’s

• Major programming projects were years late

• Software costs much higher than predicted

• Unreliable programs

• Difficult to maintain, understand and change the software

• etc.

Dr. Petru Florin Mihancea

The causes (1)
The major cause of the software crisis is that the machines have become

several orders of magnitude more powerful! To put it quite bluntly: as long
as there were no machines, programming was no problem at all; when we had a few

weak computers, programming became a mild problem, and now we have gigantic
computers, programming has become an equally gigantic problem.

Edsger Dijkstra

Complexity
Much larger and more complex software products than previously
developed

Expectations
Hardware prices were going down, prices for software were
increasing dramatically

Change
Need to maintain and evolve programs

Dr. Petru Florin Mihancea

The causes (2)

Larger and more complex programs
became possible, BUT ...

... the informal
way of developing software

became insufficient!

Dr. Petru Florin Mihancea

Software engineering

Firstly defined in 1968 at the
NATO Software Engineering Conference

... is an engineering discipline that is
concerned with all the aspects of software

production from the early stages of system specification to
maintaining the system after it has gone into use

Why a different discipline is

needed?

Dr. Petru Florin Mihancea

1. What is the difference between Software
Engineering and Computer Science ?
Computer science
Concerned with theories and methods that underlies computer and
software systems

Software engineering
Concerned with the practical problem of producing software

• It is not just concerned with the technical processes of software
development but also with activities such as software project
management and with the development of tools, methods and
theories to support software production

• Software engineers apply theories, methods and tools but they
use them selectively and always try to discover solutions to
problems even when there are no applicable theories and
methods

• Software engineers look for solutions within given constraints
e.g., financial

Dr. Petru Florin Mihancea

2. What is a software product ?

Developer myth: The only deliverable work
product for a successful project is the
working program

A. Instructions (computer programs) that when executed provide
desired function + data structures that enable programs to manipulate
information
+
B. Documents that describe the operation and use of the programs
(e.g. documentation)

WRONG!

Real products are more than just

coding …

Dr. Petru Florin Mihancea

Programs vs Software

The Mythical Man-Month [Brooks,1995]Software product development

involves many different activities

Dr. Petru Florin Mihancea

A software process is a set of activities and
associated results that produce a software
product

Fundamental activities
1. Software specification

defining the software to be produced
2. Software development

designing and programming
3. Software validation

checking to ensure that it is what the customer required
4. Software evolution

modification to adapt to customer / market requirements

3. Which are the main activities to apply in
order to build a software product ?

Dr. Petru Florin Mihancea

Various ways in which these activities can be
“chained”

Some processes

A. Waterfall approach
separate steps for specification, design, implementation, etc.
complete a phase and only after move to the next one

B. Iterative development
interleaves specification, development, validation activities, etc.
fast development of an initial system and refine it with the
customer

Various pros/cons

- see later :)

Dr. Petru Florin Mihancea

What fundamentals ?

Methods
how to accomplish different phases of a development process

Processes
what are the phases and how is the flow of a development process

Tools
what are the tools to support the involved activities

Other programming language mechanisms
used in professional software development

Dr. Petru Florin Mihancea

Computer-Aided Software
Engineering Tools

A wide range of different types of programs
that are used to support software

process activities

Lower CASE
back-end activities e.g. programming, debugging, testing

Upper CASE
front-end activities e.g. requirements and design

...

...
Dr. Petru Florin Mihancea

2. Questions about Software Engineering

Dr. Petru Florin Mihancea

A. What is a software product ?

Types of software products
Generic

developed by an organisation and sold on an open market; the
organisation controls the specification; e.g. Word, Excel

Customised
developed especially for a particular customer according to their
specification; e.g. air traffic control

Currently, more and more generic products are built which can also be
adapted for specific customers e.g., Enterprise Resource Planning (ERP)

Computer programs and their documentation
describing their operation and usage (e.g., design, user manuals)

Couldn’t a software product be

developed / built like other things

human build?

Dr. Petru Florin Mihancea

Distinguishing characteristics of software

2. Software does not “wear out”

1. Software is developed or engineered, it is
not manufactured in the classical sense

3. Although the industry is moving towards
component-based assembly, most software
continues to be custom built

Dr. Petru Florin Mihancea

Software is developed or engineered, it is
not manufactured in the classical sense (I)

http://hubpages.com/hub/digital-clock-using-microcontroller-89C5289S52

manufacturing

http://www.timetools.co.uk

a physical form

for hardware

engineered

Dr. Petru Florin Mihancea

Software is developed or engineered, it is
not manufactured in the classical sense (II)

for software

engineered

Logical
"product"

Both activities require the
construction of a product but the
approaches are different

Software costs are
concentrated in engineering

Dr. Petru Florin Mihancea

Software does not “wear out” (I)

for hardware

Pressman - Software Engineering

Dr. Petru Florin Mihancea

for software

Software does not “wear out” (II)

But it deteriorates in a

different way

Dr. Petru Florin Mihancea

Software must evolve

Software systems must be continually
adapted to new requirements else they
become progressively less satisfactory

One of the Lehman’s software
evolution laws

Why ?

Dr. Petru Florin Mihancea

Software aging

ClassA ClassB

ClassC ClassD

ClassB

ClassDClassC

ClassA G ClassB

ClassC

ClassD

C
lassA F

Programs, like people, get old!
D. Parnas - Software aging

How ?

Changes are not necessary performed by
the original developers

Those that modify a system do not fully
understand it and thus, may deteriorate
the program (including its internal
structure)

After several such modifications nobody
understand the modified product :)

Dr. Petru Florin Mihancea

Pressman - Software Engineering

for software

Software does not “wear out” (III)

Software deteriorates due to

repeated changes

Software maintenance

considerably more difficult

than hardware maintenance

Dr. Petru Florin Mihancea

Software is still custom built

http://hubpages.com/hub/digital-clock-using-microcontroller-89C5289S52

for hardware

http://www.timetools.co.uk

select standard components,
having well defined functions,

interfaces, etc.

In the software world, this component reuse
is something that has only begun to be

achieved

We need more than algorithmic libraries
e.g., frameworks

Dr. Petru Florin Mihancea

And these are only initial

production costs!

Coding is NOT the
main cost :)

B. What are the software costs? (I)

How is the software cost distributed over
different activities e.g., specification, design,
development, testing?

Dr. Petru Florin Mihancea

Developer myth: Once we write the program
and get it work our work is done

WRONG!

Sommerville - Software Engineering 8

What are the software costs? (II)

Always, design your

product for change!

Dr. Petru Florin Mihancea

C. What is quality for software?
Functional suitability e.g., correctness - it behaves/
functions as per software requirement specifications

Maintainability - software should be written in such a
way that it may evolve to meet the changing needs of
customers e.g., modularity, testability

Usability - it must be usable, without efort, by the type
of user for whom it is designed e.g., user interface
aesthetics, learnability

Efficiency - it should not make wasteful use of system
resources such as memory and processor e.g., time
behaviour

Portability, Reliability, Security, …
The expected non-

functional quality factors

depend on the

application and not

possible to optimise it for

all these factors
Dr. Petru Florin Mihancea

3. Myths about software development

Dr. Petru Florin Mihancea

Developer myth: Software engineering will
make us create voluminous and unnecessary
documentation and will invariably slow us
down

WRONG!

Software engineering is NOT about documents,
it is about creating quality
Better quality leads to reduce rework, reduce
rework results in faster delivery times (and
costs).

Dr. Petru Florin Mihancea

Developer myth: Until I get the program
“running” I have no way of assessing its
quality

WRONG!

Software reviews can be applied from the
inception of the project and found to be
effective in finding certain classes of
problems

Some design analyses can be run while
writing the code

Dr. Petru Florin Mihancea

Customer myth: A general statement of
objectives is sufficient to begin writing
programs - we can fill details later

WRONG!

A poor up-front definition is a
major cause of failed projects
Communication with the
customer is mandatory
Detailed (formal) description of
domain, function, behaviour,
performance, interfaces,
validation criteria are essential

Dr. Petru Florin Mihancea

Customer myth: Project requirements
continually change, but change can be easily
accommodated because software is flexible

Pressman - Software Engineering

WRONG!

Dr. Petru Florin Mihancea

Management myth: If we get behind
schedule, we can add more programmers and
catch up

WRONG!

Completely independent subtasks

Brooks - Mythical MM

Non decomposable task

Brooks - Mythical MM

Dr. Petru Florin Mihancea

Management myth: If we get behind
schedule, we can add more programmers and
catch up

Brooks - Mythical MM

Partially independent tasks
(extra time for communication)

Brooks - Mythical MM

... and when too much
communication is required :)

Brook’s law - Adding

manpower to a late

software project makes it

later

WRONG!

