
New Frontiers of Reverse Engineering

Gerardo Canfora
Massimiliano Di Penta
FOSE / ICSE 2007

Reverse engineering is analyzing a subject system to:

identify components and their relationships, and

create more abstract representations.

Chikofky & Cross, 90

2

Tudor Gîrba

Why reverse engineer?

3

In 1944, 3 B-29 had to land in Russia

4Tudor Gîrba

Requirement: Copy everything fast!

5Tudor Gîrba

Approach: disassemble, run, test

6Tudor Gîrba

TU-4 Result: 105,000 pieces
reassembled in 2 years

7Tudor Gîrba Tudor Gîrba

Reading code...

100’000 lines of code

* 2 = 200’000 seconds

/ 3600 = 56 hours

/ 8 = 7 days

8

forward engineering

actual development }

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

How development happens

9Tudor Gîrba

re
ve

rs
e

en
gin

ee
rin

g

forward engineering

Reengineering life cycle

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

10Tudor Gîrba

re
ve

rs
e

en
gin

ee
rin

g

forward engineering
program transformation

Reengineering life cycle

}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

11Tudor Gîrba

Where is the “real action” happening?

International Conference on
Software Maintenance (26)

Working Conference on
Reverse Engineering (16)

International Conference on
Program Comprehension (17)

Intl. Workshop on
Source Code Analysis and

Manipulation (10)

13

You got to be careful if you
don't know where you're
going, because you might
not get there.

Yogi Berra

Directions in
Reverse Engineering

Tudor Gîrba 14

1 Software Understanding

2 Design Recovery

15

1Software Understanding
Achievements

Understanding and Migrating Procedural Code

Create Models and Model Extractors/Parsers

Clone Detection and Analysis

Aspect Mining

Visualizing Software Artifacts

Cope with Y2K problem

Created many intermediary representations

Identify objects in legacy code

Migration from procedural to object-oriented system

issue of changing the language without changing the paradigm

1Software Understanding
Achievement 1.1: Understanding and Migrating Procedural Code

Achievements in

Mid ‘90s

Parsing source-code and performing rule-base transformations

Parsing problems due

! a. diversity of language (500 problem)

! b. macros and preprocessor directives (C/C++)

Island/Lake Parsing

! parse only program constructs that you care about [Moonen]

1Software Understanding
Achievement 1.2: Create Models and Model Extractors/Parsers

NEW!

Use parsin
g fac

ilities in IDEs

Parsing can be a problem...

Meta-Model Example: FAMIX

moose.unibe.ch

loose.upt.ro/iplasma

www.frontendart.com

Model Extractors and
Analysis Toolkits

Example: iPlasma Toolkit

Model Extractors

MCC / FAST Memoria / Recoder

Models
HisMo MEMORIA Membrain

 build

Analyses

Metrics
Detection
Strategies

Code
Duplication

Data-flow
Analyses

use

Front-end

INSIDER

integrate

22

1 Software Understanding

2 Design Recovery

Two Issues

! a. precision (issue: false positives)

! b. recall (issue: false negatives)

Three Approaches

! a. token-based (high recall > yet, much noise)

! b. AST-based (high precision > yet, misses true cases)

c. metrics-based (language-independent)

1Software Understanding
Achievement 1.3: Clone Detection and Analysis

Author Level Transformed Code Comparison Technique

Johnson 94 Lexical Substrings String-Matching

Ducasse 99 Lexical Normalized Strings String-Matching

Baker 95 Syntactical Parameterized Strings String-Matching

Mayrand 96 Syntactical Metrics Tuples Discrete comparison

Kontogiannis 97 Syntactical Metrics Tuples Euclidean distance

Baxter 98 Syntactical AST Tree-Matching

Source Code Transformed Code Duplication Data

Transformation Comparison

Tudor Gîrba

25

Line bias (LB)

Minimum length of a fragment
(SEC - Standalone Exact Clone)

Significant Duplication Chain (SDC)

 2 3

2

Chains of Duplication Archeology of Code Duplication
Wettel, Marinescu 2005
Lanza, Marinescu, 2006

“Cloning Considered Harmful” considered harmful
Kapser, Godfrey 2006

Example:
Hardware Variation

Need to understan
d the reason

of clo
ning before deciding if h

armful

Example:
API/Library
Protocols

Example:
Bug Workaround

1Software Understanding
Achievement 1.4: Aspect Mining

5 Concern 1
Aspect 1

Concern 2

Separate
 the principal

decompositio
n from crosscu

tting

concerns

from K.Mens, A.Kellens, J.Krinke “Pitfalls in Aspect Mining”

Aspects in a Nutshell

from K.Mens, A.Kellens, J.Krinke “Pitfalls in Aspect Mining”

Aspects in a Nutshell

Aspect Mining Techniques

FANIN (methods called from many different places)

Clones

Correlation of line co-changes [Canfora]

1Software Understanding
Achievement 1.5: Visualizing Software Artifacts

A picture is worth

a thousand words.

[unknown]

..depends on the picture
[Lanza]

Visualization does not guarantee understanding

33Tudor Gîrba

1. Right level of detail

2. Naviga
tion

3. Easy t
o understan

d

Software visu
aliza

tion is m
ore than UML

Polymetric Views show up to 5 metrics.

Color
metric

Width metric

Height metric

Position metrics

Lanza, 2003

System Complexity shows class hierarchies.

lines

attributes

methods

Lanza, Ducasse, 2003

Lanza, Ducasse, 2002

Evolution Matrix shows changes in classes

Idle class

Pulsar class

Supernova class

White dwarf class

Code City shows where your code lives.
Wettel, Lanza, 2007

classes are buildings grouped in quarters of packages

Look carefully how the system evolves in time!

41

1Software Understanding
Trends

Understanding Systems with High Dynamicity

Understanding Cross-Language Systems

Mining Software Repositories

42

Reflection and loading classes at run-time

BAD

affects points-to analysis

Solution: DA must complement SA

GOOD

access to members of classes ;

support for analysis JVMTI instead of instrumenting code

1Software Understanding
Trend 1.1: Understanding Systems with High Dynamicity

43

Especially in the case of Web Applications (and .NET)

How to analyze in an integrated manner different types of code
that coexist

HTML,

Object-oriented,

SQL,

Scripting code

1Software Understanding
Trend 1.2: Understanding Cross-Language Systems

44

Analyze versioning systems (study the evolution of software)

 Changes correlated with other faultiness [Zeller]

 Co-changes correlation with code duplication [Geiger etal]

 Co-changes to refine detection of design flaws [Ratiu etal]

Analyze developers behavior

1Software Understanding
Trend 1.3: Mining Software Repositories

Moved from 1D (SA)

to 2D (SA + DA)

to 3D (SA + DA + Time)

45

2Design Recovery
Achievements

Recovery of UML Models (class and object diagrams)

Identifying Design Patterns (motifs) in code (Guéhéneuc)

Clustering-Based Architecture Recovery

Feature/Concept Location

46

2Design Recovery
Achievement 2.2: Clustering-Based Architecture Recovery

Mitchell, Mancoridis,

TSE 2006

47
from T.Girba “Modeling History to Understand Software Evolution”. PhD 2003

Formal Concept Analysis (FCA) in a nutshell.

48
from T.Girba “Modeling History to Understand Software Evolution”. PhD 2003

Formal Concept Analysis (FCA) in a nutshell.

49

Element = Function

Property = Type used by Function

Siff, R
eps, TSE 1999

2Design Recovery
Achievement 2.2: Clustering-Based Architecture Recovery

50
Girba, PhD, 2003

2Design Recovery
Achievement 2.2: Clustering-Based Architecture Recovery

51

2Design Recovery
Trends

Extraction of Object Diagrams and Constraints (pre/post conditions)

Migration to Web 2.0 applications

Interactive RE environments

52

2Design Recovery
Trend 2.3: Interactive RE environments

RE: not only source code info; but also developers rationales

2 Problems: (i) incompleteness ; (ii) semi-automatic

Solution: interactively improve artifact presentation

- give feedback to RE system (efficiently!)

- RE systems should learn (machine learning, GA)

- best in IDEs

Issues and Challenges

A Continuous RE

B RE for SOA and
Autonomic Computing

54

A Continuous RE

Exploit RE in the Fwd. Eng. process (especially in IDEs)

Benefits

1. Clearer picture (understanding) of the developed system

2. Permanent consistency checks (design vs. code vs. tests)

3. Better QA hints

- continuous monitoring

- learning tools for better traceability links

55

B RE for SOA and
Autonomic Computing

SOA - separation of software ownership (product) from software use
(service)

Autonomic Computing - self-adaptation and self-evolution

56

B RE for SOA and
Autonomic Computing
SOA

Each service offers a limited view

Danger: system as an orchestration of various services

! discrepancy between terminology = harder to understand

no access to source-code

57

B RE for SOA and
Autonomic Computing

Autonomic Discovery

find and bind new services when default is not ok

Self-Healing

change composition, reconfiguring/repairing system, interrupting exec

Danger: high dynamism

pieces composing the execution known only at run-time

Systems with Autonomic Capabilities

58

What about RE Tools as
Composition of Services? :)

