
Software Testing Research:
Achievements, Challenges, Dreams

Antonia Bertolino

– paper at ICSE 2007, FSE track –

presented by Marius Minea

December 2, 2009

A. Bertolino: Software Testing Research 2

Starting point

Testing today is still:
ad hoc
expensive
unpredictable in effectiveness

Roadmap
where to go: dreams
how to get closer: challenges

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 3

Recap: what is testing ?

observing software execution
to validate intended behavior
and identify errors

Testing is an instrument for quality assurance:
most direct and realistic feedback
⇒ will always be needed

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 4

What are the hard problems?

Software is increasingly complex, pervasive, critical

We want higher quality and dependability

⇒ Testing becomes difficult and expensive

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 5

The Questions (1 - 2)

WHY: test objective
look for faults ?
decide on product release ?
evaluate usability ?

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 6

The Questions (1 - 2)

WHY: test objective
look for faults ?
decide on product release ?
evaluate usability ?

HOW: test selection
ad hoc
at random
systematically (algorithmic or statistical)

Important: influences test efficacy

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 7

The Questions (3 - 4)

HOW MUCH: test adequacy
coverage analysis
reliability measures

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 8

The Questions (3 - 4)

HOW MUCH: test adequacy
coverage analysis
reliability measures

WHAT: levels of testing
test whole system
or a part (unit/component/subsystem; integration)

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 9

The Questions (5 - 6)

WHERE do we observe ?
in a simulated environment
in the real (target) context

Example: embedded systems (test with emulators / with hardware)

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 10

The Questions (5 - 6)

WHERE do we observe ?
in a simulated environment
in the real (target) context

Example: embedded systems (test with emulators / with hardware)

WHEN it in the product lifecycle ?
earliest is cheapest
but some tests must await deployment

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 11

The four dreams

1. Universal test theory

2. Test-based modeling

3. 100% automatic testing

4. Efficacy-maximized test engineering

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 12

Achievements: early years

70’s: testing is an art
destructive (execute with intent to find errors)
design is constructive

80’s: testing is an engineered discipline
positive view: prevention

a broad and continuous activity throughout the development process [Hetzel]

the act of designing tests is one of the best bug preventers known [Beizer]

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 13

Achievements: Testing process [what? when?]

process models
systematize “test design thinking”

levels: unit, integration, system testing
⇒ V model ubiquitous (is it?)

Critics: excess of form = bureaucracy

⇒ agile testing
⇒ test-driven development

What is a suitable testing process ?
⇒ still a fundamental research topic

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 14

Achievements: Test criteria [how? how much?]

Well studied and classified (black-box/white-box, coverage, etc.)
Challenge: make a justified choice / combination
Buzzword: model-based testing ?

Comparing test criteria

from analytical towards empirical
systematic vs. random testing

Demonstrating effectiveness of testing techniques
⇒ still a fundamental challenge

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 15

Object-oriented testing

90’s: everything is object-oriented!
but: new problems and risks for testing

encapsulation can hide bugs

need to re-test inherited code

need new coverage models

for polymorphism and dynamic binding

need effective incremental integration testing
1248 pages!

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 16

Component-based testing

late 90’s: components are the ultimate!

but: interface info not enough for functional testing
need to re-test in deployed context (just like O-O!)

Solutions:
built-in testing (tests packaged with component)
explicit contracts for verification

Compositional testing still a fundamental theoretical challenge

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 17

Protocol testing

Protocols are precisely specified (good for testing!)
may have standard conformance test suite
or formal methods to check conformance
⇒ different from general software testing

Trends:
software could adopt standardized specifications
protocols are increasingly complex

�

⇒ getting closer

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 18

Reliability testing [how? how much?]

Testing can’t find all bugs
⇒ eliminate bugs hit most often and/or most critical ones

How ?
Intuitively: tester mimics user
Practically: use reliability models

Status:
Theory is good (software reliability models)
Practice not so good (perceived as expensive, hard to identify usage profile)

⇒ still a challenge ...

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 19

Dream 1: Universal test theory

A theory , what for ?
understand strengths and limitations of test techniques
choose the most adequate one

Dream (as concept):
despite negative theory (testing can never be exact)
be positive in practice

what do we know after applying a given testing technique ?
how can we dynamically tune our testing stragegy ?

Dream (as tool):
given goal of maximum test effectiveness (cf. dream 4)
decide combination of techniques to adopt (+ assumptions)

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 20
Challenge: Explicit test hypotheses [why?]

Guarantees are never absolute (in testing and real life...)
only under certain conditions (read the fine print)

⇒ to be sure what we’re saying, need to make assumptions explicit

Assumptions:

execution context (closed world assumption)
software is “correct”. But are the libraries ? the OS ? the hardware ?

is test representative for a class ?
e.g. uniformity hypothesis within a black-box partition

Similar to fault model in protocol testing / fault-tolerance

Summary: explicitating assumptions refines WHY a test is relevant

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 21

Challenge: Test effectiveness [why? how? how much?]

Old challenges, still current:

How effective is a test selection criterion for finding faults ?
evidence: analytical, statistical, empirical

For what classes of faults is a criterion useful ?

Wisdom: use combination of techniques
saturation effect affects single technique

e.g. systematic vs. random testing

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 22

Challenge: Compositional testing [what?]

Divide et impera also in testing
do unit testing first

Integration order / test order: extensively investigated

Compositional : what do component tests say about system behavior ?
what can we reuse ?
what tests must we add ?

Current work:

component-based software reliability (quantitative estimation)
assume-guarantee reasoning
composition of protocols
fault models for component integration

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 23

Empirical body of evidence

Controlled experimentation is an indispensable research methodology

but is hard to do

Need meaningful experiments, in terms of
scale (large)
subjects used (replicated)
context (real-world)

Solution: collaborative open experiments
data repositories: bugs, flawed versions, tests

Software-artifact Infrastructure Repository http://sir.unl.edu/

Cooperative Bug Isolation Project http://www.cs.wisc.edu/cbi/

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 24

Dream 2: Test-based modeling

Buzzword: model-based testing
use whatever design model and adapt a testing technique to it

Reverse is better: test-based modeling
build models that allow effective testing
similar to design for testability

Example: models already instrumented for testing
assertions: check internal state at runtime
contracts: can be used for test generation (JMLUnit)

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 25

Challenge: Model-based testing [how? how much?]

MBT: an old idea (since Moore and FSMs)

Promised benefits are high, but adoption barrier still there:
lack of formal modeling skills

Insight, the hard way: forcing users to new notations does not work
⇒ combine different models

transition-based, contract-based, scenario-based

Combine with other approaches (testing over simulations)

Integrate in current software processes

Special case: conformance-based testing (model to specification)
again, mostly theory, not practice ...

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 26

Challenge: Anti-model-based testing [how? how much?]

Reverse: derive models from test executions (chosen or passively recorded)
useful when models unavailable

Models can be:
finite-state machine
data invariants / pre- / postconditions
sequence diagrams

Approaches:
dynamic invariant generation
learning automata / extracting interfaces (for components/services)

Models need to be refined if proven inaccurate (counterexample-based)

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 27

Challenge: Test oracles [why?]

Basics: can’t do testing without knowing good output

Status:
few alternatives to human observation
can become bottleneck to test automation
balance cost and effectiveness (missed errors / false positives)

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 28

Dream 3: 100% automatic testing

Utopia: a program that automatically tests itself
(generates instrumentation and test cases, runs them, removes test code, pro-
duces reports)

Promising: automated intelligent input generation (for unit tests)

Directed Automated Random Testing
(statically extract interface, produce test driver,
generate random inputs, exercise alternating paths)

software agitation (commercial, similar)

parameterized unit tests (Microsoft PEX for .NET)
tests characterized by symbolic constraints between inputs

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 29

Challenge: Test input generation

Again, lots of theory, limited industrial impact. But good hope.

model-based test generation

combine state-based approaches with data models

symbolic execution: exploit advances in theorem proving/constraint solving

random test generation
sophisticated techniques may outperform systematic test generation
promising: concolic (concrete + symbolic) execution

search-based test generation
direct search towards most promising areas of input space

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 30

Challenge: Domain-specific test approaches [what?]

So far, case studies rather than methodologies:
databases
GUI usability
web applications
avionics
telecom systems

Current work: frameworks for generating domain-specific test drivers

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 31

Challenge: On-line testing [where? when?]

Testing not just pre-release, but also in operation
⇒ monitor system behavior, using dynamic analysis and self-test

Goals: detect malfunctions, performance problems; possibly recover
Called passive testing: needs no test suite
Less powerful than proactive testing

Related:
actively stimulate application after deployment
testing for resource-constrained applications (e.g. adaptive code unloading)

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 32

Dream 4: Efficacy-maximized test engineering

Ultimate goal: “practical testing methods, tools and processes for development of
high quality software”

good process
+ powerful methods (efficiency and effectiveness)
+ easy-to-use tools / environments

Main obstacle: complexity

Main strategy: design for testability

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 33
Challenge: Controlling evolution

Fact: Most testing is regression testing

To reduce cost, need to
reduce amount of retesting
prioritize test cases
automate re-execution

Issues:
testing global properties as parts are modified
testing component evolution in line with architecture
testing product families

Related: test factoring
split complex system test into many unit tests

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 34

Challenge: Testing patterns

Recall: theory goal of relating faults to appropriate tests
⇒ need to collect pragmatic evidence for test effectiveness

⇒ organize proven solutions into catalogue of test patterns

Patterns document problem-solving expertise

e.g. patterns for testing object-oriented software [Binder]

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 35

Challenge: Understanding the costs of testing

Everyone keeps citing that testing cost is 50% of total software cost ...

Problem: real data is often company-confidential

Problem: most statistics assume all bug costs are equal

value-based software engineering [Boehm]
quantitative frameworks to support manager decisions

Key question: how to use a fixed testing budget most effectively ?

Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 36

Challenge: Education of software testers

... this lecture ...

Research Topics in Software Systems. Lecture 10 Marius Minea



A. Bertolino: Software Testing Research 37
Transversal challenges

Testing within the emerging development paradigm Current paradigm: from com-
ponents to services

Testing process different for service developer, provider, and integrator
black-box for the latter two
off-line or on-line

Services have to expose an interface (e.g. WSDL)
⇒ can use it for testing
⇒ but method signatures only are poor information

Coherent testing of functional and extrafunctional properties

timing, performance, resource usage, workload ...

approaches: model-based and genetic
extend conformance and interface theory
Research Topics in Software Systems. Lecture 10 Marius Minea

A. Bertolino: Software Testing Research 38

Conclusions (personal)

Programs will always have bugs.

The obvious ones are found, the hidden ones remain.

Software testing has many challenges.

The easy ones are solved, the hard ones remain.

⇒ lots of interesting research to do !

Exploit connections to other areas (debugging, static analysis, modeling,
constraint solving, formal methods ...)

Research Topics in Software Systems. Lecture 10 Marius Minea


