
Understand risks in 
software systems



Nobody cares 
about code quality 







Software engineering 
is about managing  

risks



Software design 
is about managing  

risks



Design principles are about managing  

risks of change



is about managing  

risks of change



Time

Defects



Risks 
come less from  

the code itself…!







FragilityRigi
dity

Immobility Visc
osit

y



Quality analysis tools…



… provide  
narrow view 
of quality



…as they analyse 
only CODE



and 
only NOW



…and therefore  
miss the 
cause of problems





Timelines are better that single numbers 
but are still missing the point:

they capture the trends of the effect, 
not change itself



TeamCode &
Change



code & team dynamics are ignored in tools  
because information  

is not available in the code



It is available!



Source-control systems



commit:  9a0222d

author: John Appleseed

date:Fri, 3 Jun 2016 18:49:59 +0200 

message:

Refactor platform configuration for B40.

Change MySQL, JBoss and AEM Forms versions.

Small fix for firewall setup during individualize-instance action

SPR-1076

numstat:

:100644 100644 82bef5d... 82bef5d... D src/main/web/reactive/socket/RxWebSocketClient.java

:100644 100644 82bef5d... 82bef5d... M src/main/test/context/junit4/person-schema.sql 

:100644 100644 82bef5d... 82bef5d... A src/main/web/reactive/UndertowWebSocketClient.java        

:100644 100644 82bef5d... 82bef5d... M src/main/chef/zones/public.xml

 0 17 src/main/web/reactive/socket/client/RxNettyWebSocketClient.java

 3 3  src/main/test/context/junit4/person-schema.sql

 3 0  src/main/web/reactive/socket/client/UndertowWebSocketClient.java       

 85 4  src/main/chef/zones/public.xml

Age / Recent 
commit date

Geographical region 
timezone

Packages / Components 
full path (hierarchical nesting)

Language/Technology 
file extension

Size 
∑(add-del)

Churn / Activity 
∑(add + del)

Life status 
type of change (“A” / “D” starts/ends file’s life)

Developer

Keywords 
suggest bugfix 

or cleanup

Task ID 
issue-tracking 
system (Jira)



are software analysis tools that 

discover risks  
caused by a project’s

Dx

Code Team



!The answers to the 

key questions 



Code Team



Code Alanguage independent

no code access 



Code  
Dynamics



Code Evolution: Key Questions ?

Growth

How did it grow over time?

Are there any size anomalies?

Is the growth "organic" or abrupt?

Are there signs of systematic refactoring?

Stability
Which parts change most frequently?

Which parts have been recently changed?

Are there files that change for (too) many different reasons?



How old is the system? How did it grow?



How did language usage evolve in time



Seeing 
is better than  
reading code



Technique: System Map



Technique: System Map



Files 
rectangles  

size proportional

Folders 
gray borders  
hierarchical

core/test

core/main

streams/main

streams/test

clients/main

clients/test

tests

Technique: System Map



Which parts were recently active

Recently active means that the file has been changed at least once over the last 12 weeks (cca. 3 months)

active 
changed over the 
latest 3 months

idle 
no activity in  

latest 3 months



Recently active means that the file has been changed at least once over the last 12 weeks (cca. 3 months)
active file
idle file

Which parts were recently active



Which parts are recently changed heavily

Recently active means that the file has been changed at least once over the last 12 weeks (cca. 3 months)

recent changes

1-10 11-20 >20



Which are the new files

New files are those that have been created in the least 6 weeks

recent changes

1-10 11-20 >20



Which parts are most frequently changed

all changes
active

idle
1-50 51-100 >100



severity
active

idle
1-4 5-7 8-10

Files that grow abruptly (Supernova) !
Error-Proneness



Supernova Example: AgreementResource.java !
Error-Proneness

gro
wth l

eap
s

refactoring

 Huge file (> 3.000 lines of code) 

 Heavy changed (> 350 times) 

 Many developers (> 50 contributors) 

 Concurrent development (> 5 developers)



Code  
Dependencies



Code Dependencies: Key Questions ?

Dependencies

Which files/components co-change frequently with many others?

Are there groups of files/components that frequently co-change?

Are there co-change dependencies that cross component boundaries?

Which tasks that imply changes to many files scattered over many components?



commit:  9a0222d

author: John Appleseed

date:Fri, 3 Jun 2016 18:49:59 +0200 

message:

Refactor platform configuration for B40.

Change MySQL, JBoss and AEM Forms versions.

Small fix for firewall setup during individualize-instance action

SPR-1076

numstat:

:100644 100644 82bef5d... 82bef5d... D src/main/web/reactive/socket/RxWebSocketClient.java

:100644 100644 82bef5d... 82bef5d... M src/main/test/context/junit4/person-schema.sql 

:100644 100644 82bef5d... 82bef5d... A src/main/web/reactive/UndertowWebSocketClient.java        

:100644 100644 82bef5d... 82bef5d... M src/main/chef/zones/public.xml

 0 17 src/main/web/reactive/socket/client/RxNettyWebSocketClient.java

 3 3  src/main/test/context/junit4/person-schema.sql

 3 0  src/main/web/reactive/socket/client/UndertowWebSocketClient.java       

 85 4  src/main/chef/zones/public.xml

Temporal Coupling: pairs of files changed together (co-changed) repeatedly in many commits 

Technique: Temporal Coupling

Shared Commits 
files part of the

same changeset



Which files are temporally coupled

Temporal Coupling: pairs of files changed together (co-changed) repeatedly in at least 10 commits 



Resource. 
properties

*.java

*.js

*.vm

cross-
language

PaymentMessagingBase.java

cross-
component

sample project

Cross-language and cross-component coupling !
Tedious Change. Error-Proneness (due to subtle dependencies)



Tasks cause 
subtle dependencies



Shared Tasks Coupling: pairs of files that are frequently changed in the context of the same task IDs

Technique: Shared Tasks Dependencies

File A File B

KAFKA-1910

KAFKA-112

KAFKA-234

KAFKA-543

KAFKA-243



commit:  9a0222d

author: John Appleseed

date:Fri, 3 Jun 2016 18:49:59 +0200 

message:

Refactor platform configuration for B40.

Change MySQL, JBoss and AEM Forms versions.

Small fix for firewall setup during individualize-instance action

SPR-1076

numstat:

:100644 100644 82bef5d... 82bef5d... D src/main/web/reactive/socket/RxWebSocketClient.java

:100644 100644 82bef5d... 82bef5d... M src/main/test/context/junit4/person-schema.sql 

:100644 100644 82bef5d... 82bef5d... A src/main/web/reactive/UndertowWebSocketClient.java        

:100644 100644 82bef5d... 82bef5d... M src/main/chef/zones/public.xml

 0 17 src/main/web/reactive/socket/client/RxNettyWebSocketClient.java

 3 3  src/main/test/context/junit4/person-schema.sql

 3 0  src/main/web/reactive/socket/client/UndertowWebSocketClient.java       

 85 4  src/main/chef/zones/public.xml

Task ID 
issue-tracking 
system (Jira)

(task_prefix\s*)(-|:|#){0,1}\s*)([0-9]+)

Technique: Smart commits (traceability links)



aq

db

bb

webapp

webapps

persistence

Resource.properties

pymService_v1.dtd

Which files are changed by the same tasks



Bottleneck File: a file that is changes in connection with many different tasks (at least 20 in this analysis). Such a file is playing 
a central role in the system, but is also suspect of having multiple responsibilities, if chaged in the context of unrelated tasks.

central✓

too many responsibilities✗

Technique: Files changed by many tasks



# unique tasks
active

idle 1-80 81-150 151-

Bottlenecks: files changed by many tasks !
Hard to maintain. Error-Prone.



churn / activity

active
idle

1-2000 2001-4000 4001-

KAFKA-1910 KAFKA-343

High Impact Tasks: tasks causing scattered changes !
High Cost of (Re-)Testing. Tedious Changes



Tasks also reveal 
defects distribution



Defects
How much effort is spent on  bug-fixing?

Are there code areas that concentrate many bug-fixing changes?



https://issues.apache.org/jira/projects/KAFKA

 https://github.com/seb-luke/Data-Mining-in-Issue-Tracking-Systems

{
    "key": "KAFKA-6055",
    "parent-key": "",
    "issuetype": "Bug",
    "status": "Resolved",
    "start-date": "2017-10-11T22:51:06.000+0000",
    "end-date": "2017-10-12T09:15:37.000+0000"
},
{
    "key": “KAFKA-3663",
    "parent-key": "",
    "issuetype": "Improvement",
    "status": "Patch Available",
    "start-date": "2017-10-12T15:26:37.000+0000",
    "end-date": ""
},

export from

commit:bfa82fc0b63a5ad0121da6e2190a587eb672a1d5
author:Vahid Hashemian
date:Thu, 12 Oct 2017 10:09:16 +0100
message:
KAFKA-6055; Fix typo in KAFKA_JVM_PERFORMAN

commit:c0f7a7705851eec4a77d3e42cf6bf2546c07ffa8
author:Andrey Dyachkov
date:Mon, 14 Aug 2017 18:24:43 +0100
message:
KAFKA-3663; Improve test coverage

Technique: Bug-fixing commits (Jira tasks)



Which are the trends of (Jira) task types
Co

m
m

its

0

30

60

90

120

150

180

210

240

270

300

20
11

20
12

20
13

-Q
1

20
13

-Q
2

20
13

-Q
3

20
13

-Q
4

20
14

-Q
1

20
14

-Q
2

20
14

-Q
3

20
14

-Q
4

20
15

-Q
1

20
15

-Q
2

20
15

-Q
3

20
15

-Q
4

20
16

-Q
1

20
16

-Q
2

20
16

-Q
3

20
16

-Q
4

20
17

-Q
1

20
17

-Q
2

20
17

-Q
3

Bug-fixing Tasks Improvement Tasks New Features



Technique: Bug-fixing commits (keywords)

commit:  9a0222d

author: John Appleseed

date:Fri, 3 Jun 2016 18:49:59 +0200 

message:

Refactor platform configuration for B40.

Change MySQL, JBoss and AEM Forms versions.

Small fix for firewall setup during individualize-instance action

SPR-1076

numstat:

:100644 100644 82bef5d... 82bef5d... D src/main/web/reactive/socket/RxWebSocketClient.java

:100644 100644 82bef5d... 82bef5d... M src/main/test/context/junit4/person-schema.sql 

:100644 100644 82bef5d... 82bef5d... A src/main/web/reactive/UndertowWebSocketClient.java        

:100644 100644 82bef5d... 82bef5d... M src/main/chef/zones/public.xml

 0 17 src/main/web/reactive/socket/client/RxNettyWebSocketClient.java

 3 3  src/main/test/context/junit4/person-schema.sql

 3 0  src/main/web/reactive/socket/client/UndertowWebSocketClient.java       

 85 4  src/main/chef/zones/public.xml

Keywords 
suggest bugfix 

or cleanup

Bugfixing and Refactoring Messages: Commits are labeled as “bug-fixing” and resp. “refactoring” by  mining commit messages for keywords suggesting bugfixing 
changes; for “bug fixing” the message must contain one of the strings: "fix", "bug", "error", "issue", "correct", "workaround", “crash”; for refactoring the strings are: 
"refactor", "restructur", "clean", "improve", "rename", "rework", "move", "improved", “reorgani".



Which are the bugfixing/refactoring trends ?

Bugfixing and Refactoring Messages: Commits are labeled as “bug-fixing” and resp. “refactoring” by  mining commit messages for keywords suggesting bugfixing 
changes; for “bug fixing” the message must contain one of the strings: "fix", "bug", "error", "issue", "correct", "workaround", “crash”; for refactoring the strings are: 
"refactor", "restructur", "clean", "improve", "rename", "rework", "move", "improved", “reorgani".

Co
m

m
its

0

60

120

180

240

300

360

420

480

540

600

2011 2012 2013-Q1 2013-Q2 2013-Q3 2013-Q4 2014-Q1 2014-Q2 2014-Q3 2014-Q4 2015-Q1 2015-Q2 2015-Q3 2015-Q4 2016-Q1 2016-Q2 2016-Q3 2016-Q4 2017-Q1 2017-Q2 2017-Q3

Bug-fixing Messages Refactoring Messages Other Messages

Co
m

m
its

 P
er

ce
nt

ag
e

0

40

80

120

160

2011 2012 2013-Q1 2013-Q2 2013-Q3 2013-Q4 2014-Q1 2014-Q2 2014-Q3 2014-Q4 2015-Q1 2015-Q2 2015-Q3 2015-Q4 2016-Q1 2016-Q2 2016-Q3 2016-Q4 2017-Q1 2017-Q2 2017-Q3



commits w. bugfix message

active
idle

1-20 21-40 41-
Bug Magnets: files with many commits containing bugfixing messages

Bug Magnets (based on keywords) !
Error-Prone Code. Insufficient / Superficial Testing



Team B



Team  
Knowledge



Knowledge

Does the current team know enough about the system?

Is the current team large enough for the current development stage?

For which code areas does the current team lack knowledge?

Which developers have most system knowledge ?

Which developers have most knowledge about each code area?

How many developers cover each language?

Is knowledge shared or is it polarised?



Knowledge: two key questions

2
Is she 

still in  
the project?

1
What 

knowledge  
does she hold?

commit:  9a0222d

author: John Appleseed

date:Fri, 3 Jun 2016 18:49:59 +0200 

message:

. . .

numstat:

:100644 100644 82bef5d... 82bef5d... D src/main/web/reactive/socket/RxWebSocketClient.java

:100644 100644 82bef5d... 82bef5d... M src/main/test/context/junit4/person-schema.sql 

:100644 100644 82bef5d... 82bef5d... A src/main/web/reactive/UndertowWebSocketClient.java        

:100644 100644 82bef5d... 82bef5d... M src/main/chef/zones/public.xml

 0 17 src/main/web/reactive/socket/client/RxNettyWebSocketClient.java

 3 3  src/main/test/context/junit4/person-schema.sql

 3 0  src/main/web/reactive/socket/client/UndertowWebSocketClient.java       

 85 4  src/main/chef/zones/public.xml

Developer

Age 
commit date

Churn / Activity 
∑(add + del)

active 
commits over the 

latest 6 weeks

passive 
commits over the  
previous 6 weeks

retired 
no commits in  

latest 12 weeks

File Owner



The Developers: Merging redundat user IDs

rnpridgeon

Ryan P

Ryan Pridgeon

Ryan Pridgeon

326

290



Who works on what?

Jason Gustafson Guozhang Wang 

activity level

active
idle

minor ownermajor

Geoff AndersonDamian Guy 



?

all active % active java scala py

88 60 68 % 19 % 74 % 6 %

Orphans: files with "retired" file owner !
Slower and Riskier Development (caused by lack of knowledge) 



Who causes most Orphans?

Retired file owner

Files Lines of Code

all active all active

Edward Jay Kreps 17 13 9,919 7,668
Neha Narkhede 16 9 8,392 5,232
Jun Rao 15 12 9,225 8,184
Ben Stopford 7 7 2,618 2,618



Project Knowledge Score (PKS) is computed as follows: each component, gets a number of “votes” based on its size (1 vote / KLOC). Developers split these 
votes per component, based on their activity on the component’s files. The PKS is the percentage of “votes” that an developer got from all components

Technique: Project-level Knowledge



Project Knowledge Score (PKS) is computed as follows: each component, gets a number of “votes” based on its size (1 vote / KLOC). Developers split these 
votes per component, based on their activity on the component’s files. The PKS is the percentage of “votes” that an developer got from all components

Technique: Project-level Knowledge



Project Knowledge Score (PKS) is computed as follows: each component, gets a number of “votes” based on its size (1 vote / KLOC). Developers split these 
votes per component, based on their activity on the component’s files. The PKS is the percentage of “votes” that an developer got from all components

Technique: Project-level Knowledge



Which are the key developers ?



Knowledge held by active developers ?

0

25

50

75

100

Knowledge

active 
(78%)

retired 
(19%)

passive (3%)



Evolution of knowledge held by active developers



What knowledge have active developers

Polarised 
Ownership

Narrow 
Focus

Weak 
Knowledge

Radu 
Z.



A story of  team changes…

developer activity state
changes active retired

many changes

Team A 

    Team B

new team 
gradually replaces the 
initial one

“come back” of several 
initial developers

retired

retired



Technique: Developers sharing knowledge



Shared Tasks Coupling: pairs of developers that are frequently committing using the same task IDs

Technique: Shared knowledge (files)

Tom Jerry

File A

File B File C

File D



Who is co-changing the same files ?



Who is co-changing the same files ?

developer activity state
active retired

Ismael 
Juma

Damian 
Guy

Jasushiro 
Matsuda

Mathias 
Sax

Guozhang 
Wang



Shared Tasks Coupling: pairs of developers that are frequently committing using the same task IDs

KAFKA-1910

KAFKA-112

KAFKA-234

KAFKA-543

KAFKA-243

Tom Jerry

Technique: Shared knowledge (tasks)



Pairs of developers that 
have worked significantly  
(at least 10% churn) on 
the same at least 10 tasks 

Martin F

Nicolas P

RichardB 

Phil W

Richard  W

Owen M

Jose M

Dominic J

Simon S

Chris H

Mathew B

Anne S

Andy S

Andreea P

Ancuta CIoana S

Catalin L

Amalia B

Alexandra G

Alina M

Catalina J

Florin B

Who is co-working on the same tasks ?

developer activity state
active retired



Team  
Stability



Team Stability: Key Questions ?

Stability

How many developers worked on the system?

How did the team size evolve over time?

When and for how long did each developer work?

Are there code areas that had many file owners?



How did the team size evolve ?

lots of activity 
few developers

sample project



Which parts are changed by many developers ?

developers
active

idle
1-10 11-30 >30



Team Churn: file has been changed by many developers over time, some having limited knowledge about the file  
Owner Churn: file for which the developer with the most activity on the file (file owner) switches many times  	

Team Churn Owner Churn

Files that are changed by too many !

severity

active
idle

1-4  5-7 8-10

Error-Prone Code (caused by inconsistency). Higher Maintenance Costs



Team  
Coordination



Team Coordination: Key Questions ?

Coordination
Which parts are changed by (too) many developers?

Are development teams working on different timezones?  



In which world regions was it developed ?

sample project



In which world regions was it developed ?

EUROPE ASIA
all changes

active
idle

1-21 21-50 >50

sample project



all changes

active
idle

1-4  5-9  10-
Zone Crossroads are files that have been frequently change both from Asia and from Europe

sample project

Files with many cross-region changes !
Error-Prone Code (due to potential inconsistencies). Slower Development (need of coordination)



Bazaar: file that is changed by many developers over a short period of time (e.g. a sprint)	

Bazaar: Files with many concurrent changes !

severity

active
idle

1-4  5-7 8-10

Error-Prone Code (due to potential inconsistencies). Harder to Merge



Integration with 
code analysis tools 



The power of synergies 
(CHRONOS meets other tools)



...

Code 
Smells

Test  
Coverage

Library 
Dependencies

Code 
Duplication

Source Code

Team  
Stability

Collaboration 
Patterns

Ownership 
Analysis

Code Change 
Patterns

Traceability 
Links

Bug-Fixing  
Patterns

Git/SVN Meta-Data 

Risk Model

Jira 
Tasks ...

files

Dx



...
Dx

Code 
Smells

Test  
Coverage

Library 
Dependencies

Code 
Duplication

Source Code

Team  
Stability

Collaboration 
Patterns

Ownership 
Analysis

Code Change 
Patterns

Traceability 
Links

Bug-Fixing  
Patterns

SVN Meta-Data 

Jira 
Tasks ...

files

Risk & Quality Model



Synergies…

Code Smells Test Coverage Library Dependencies

Architectural Issues Code Duplication



The analysis of library dependencies



Discover Technology Fingerprints

input resulttool

Legend

POME
Project Configuration

Library dependencies incl. version analysis (age, unicity) 
Project components incl. dependency graph 

java/maven Insider
Library Dependencies. Lexical Anomalies  

lexical analysis for detecting usage of technologies

Project 
files

Maven
Central

All 
Dependencies

Imports Overview

pom.xml 
files

Java
files

Technology
Fingerprints

discover
fingerprints

Vulnerable Library 
Dependencies

Redundant Library 
Dependencies



Discover Technology Fingerprints

input resulttool

Legend

POME
Project Configuration

Library dependencies incl. version analysis (age, unicity) 
Project components incl. dependency graph 

java/maven Insider
Library Dependencies. Lexical Anomalies  

lexical analysis for detecting usage of technologies

Project 
files

Maven
Central

All 
Dependencies

Imports Overview

pom.xml 
files

Java
files

Technology
Fingerprints

discover
fingerprints

Vulnerable Library 
Dependencies

Redundant Library 
Dependencies



Discover Technology Fingerprints

input resulttool

Legend

POME
Project Configuration

Library dependencies incl. version analysis (age, unicity) 
Project components incl. dependency graph 

java/maven Insider
Library Dependencies. Lexical Anomalies  

lexical analysis for detecting usage of technologies

Project 
files

Maven
Central

All 
Dependencies

Imports Overview

pom.xml 
files

Java
files

Technology
Fingerprints

discover
fingerprints

Vulnerable Library 
Dependencies

Redundant Library 
Dependencies



input resulttool

Legend

Discover Code Impact of Libraries 

Insider

lexical analysis for detecting usage of technologies

Source
Code

search fingerprints 
in source code

read 
fingerprints

Hardly Portable 
Library Dep.

All Library Dependencies (per file)

Chronos
Exploration Hub

System Map and search
File Overview with property aggregation

import and 
visualise

Ghost 
Libraries

Redundant & Vulnerable 
Libraries 

POME

Technology
Fingerprints

POME / INSIDER

Vulnerable 
Lib. Dep.

Residual 
Libraries

match



The analysis of code smells 



Code Smells: + 

https://github.com/cezarcoca/sonar-shell

SonarShell

extracts SonarQube warnings based on a configuration file

Configuration
File

read profile 

connect and extract warnings
based on configuration file

SonarQube Warnings 
per Files 

incl. Technical Debt Score

Chronos
Exploration Hub

System Map with multiple perspectives and search 
File Overview incl. results aggregation and code viewer

export results as
JSON file

load and visualise

input resulttool

Legend


