
The Future of Programming Environments:
Integration, Synergy and Assistance

Andreas Zeller
FOSE / ICSE 2007

Editor (write)

Compiler (compile)

Runtime Environment (execute)

Writing a program in the past...

Cross-referencers, code navigation (understand)

Code checkers (control quality)

Refactoring browsers (improve quality)

CSCW - Comp. Supported Collaborative Work (collaborate)

Writing a program today...

The quality of a programming environment is not only the
quality of its programming tools, but also the integration of
these tools.

“
”

1Integration

Behavioral (how does it work)

Semantical (what does it mean)

Syntactical (how is it programmed)

Architectural (how is it designed)

Different Viewpoints

Code

Design Documents (e.g. UML diagrams)

Change Histories (e.g. CVS/SVN repositories)

Test Logs

Bug databases

Programmer activity

...

Different Artifacts: Program + Process

2
Managing programs integrates with managing processes
and creates synergies.“

”

Synergy 3
As our environments evolve to collect more and more data [...]
one can expect rules and recommendations to emerge from this data,
effectively assisting the programmer in daily tasks and decisions
like an expert could do.

“
”

Assistance

To make the environment more than a mere aggregation of tools,
it is necessary that the tools not only present their results to the user,
but also provide support for automation.

“
”

1Integration

UNIX tool (user friendly to humans and other tools)

EMACS editor (“a Lisp interpreter with a screen”)

SMALLTALK (environment ≡ language)

Uniform Interfaces
(User-friendly ways to invoke a tool)

Equally f
riendly fo

r

human users an
d program

s

Separation of functionality and presentation

Counter-examples: standalone compilers ; debuggers

Internal vs. external interfaces (like in Eclipse)

Application Interfaces
(Interfaces dedicated to automation)

Additional Investment

Controlled extensibility (provide “hooks” to extend features)

Internal vs. external interfaces (like in Eclipse)

Extensible Frameworks
(Explicitly encourage tool integration)

Inversion of Control

Plugin

provides functionality to users and other plugins

Extension point

named entity for collecting contributions

Extension

a contribution

Extensibility: theEclipse Plugin System

<plugin
 id = “com.example.tool"
 name = “Example Plug-in Tool"
 class = "com.example.tool.ToolPlugin">
 <requires>
 <import plugin = "org.eclipse.core.resources"/>
 <import plugin = "org.eclipse.ui"/>
 </requires>
 <runtime>
 <library name = “tool.jar"/>
 </runtime>
 <extension
 point = "org.eclipse.ui.preferencepages">
 <page id = "com.example.tool.preferences"
 icon = "icons/knob.gif"
 title = “Tool Knobs"
 class = "com.example.tool.ToolPreferenceWizard“/>
 </extension>
 <extension-point
 name = “Frob Providers“
 id = "com.example.tool.frobProvider"/>
</plugin>

Declared contribution
of this plugin

Declared
extension points

Code Location

Needed Plugins

Identification

Extensibility: theEclipse Plugin System (2)

Plug-ins

Runtime

Platform vs. Extensible IDE

Extensible IDE

IDE

Platform

Plugins

Plugins

Eclipse is a
platfo

rm with

a sm
all ru

ntime kernel

1. Support automation interfaces

1b. ...by separating functionality from presentation

2. Seek extensibility

1Integration
Lessons

IDEs will...

1. increasingly rely on automated, extensible and reusable tools

2. serve as universal platforms for new tools

3. explicitly foster integration and contribution

1Integration
Trends

2
“

”

Synergy
Connect tasks with its relevant, filtered-out context
(Mylyn / Tasktop)

Provide navigation hints based on interaction history

Reveal co-change patterns
(eRose - obsolete)

Corelate information about an entity from all project artifacts
(Hipikat - obsolete)

Synergy Example: Software Navigation

Synergy Example: Software Navigation
(Suggestion of relevant elements)

Delta Debugging on Changes

Isolating code changes that cause a failure

based on:

- automated testing

- change history

- syntactic analysis

2 Synergy
Trends

IDEs will...

1. collect data from code, runs, and process

2. allow tools to combine and leverage such data

3. especially support data synergy

3
Having data [on code and process] available via a programming
environment opens the path to all sorts of empirical investigations. [...]
The greatest advance, will be the automation of these techniques

“
”

Assistance
Automating Data Analysis
(Visualization)

Automating Data Analysis
(Visualization)

Automating Data Analysis
(Visualization)

Mining
Data

Exploiting
Mined
Data

time

Automating Data Analysis
(Data Mining & Machine Learning)

Assisted Decisions

Why in IDEs?

they provide data & implement consequences

What Assistance?

Better Code & Design

Predict Effort and Risk

Give Rationals

Assistance Example: inCode Tips

As a goal, assistance in a programming environment
should be like a good navigator in pair programming:
monitoring actions over the driver’s shoulder,
and knowing what to say, and when to say it

“
”

Assisted Decisions
(Issues and Risks)

User Interface (balance between annoying and passive)

Accuracy (balance between false positive and false negatives)

Interpretation (drawing wrong conclusions harming developers)

Research (balance between inductive and deductive processes)

3Assistance
Trends

IDEs will...

1. mine patterns from program and process data

2. apply rules to make predictions

3. provide assistance in all development decisions

28290326
Reverse Engineering

