
1
Object vs Structured

design

3
Architectural

design principles

2
S.O.L.I.D

design principles

FragilityRigid
ity

Immobility Visco
sity

Single Responsibility Principle

Open-Closed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

!Software entities should be open for extension,
but closed for modification

Open-Closed Principle (OCP)

Modules should be written so they can be
extended without requiring them to be modified

Signs that a module is not closed

Sign #1: Dependency on concrete providers

How to make it work with a

Turb
oEng

ine?

Car needs to be changed heavily!

Sign #2: Checking Runtime Type Information (RTTI)
enum ShapeType {circle, square};

struct Shape {
 ShapeType itsType;
};

shape.h

struct Circle {
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};

void DrawCircle(struct Circle*);

circle.hstruct Circle {
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

void DrawSquare(struct Square*);

square.h

typedef struct Shape *ShapePointer;
void DrawAllShapes(ShapePointer list[], int n) {
 int i;
 for (i=0; i<n; i++) {
 struct Shape* s = list[i];
 switch (s->itsType) {
 case square: DrawSquare((struct Square*)s); break;
 case circle: DrawCircle((struct Circle*)s); break;
 }
 } }

drawAllShapes.cc

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

!RTTI can take many different forms…

It is usually a sign that the hierarchy “cries”
for a dynamically bound service.

flags
instanceofis

dynamic_cast

enums

Sign #3: Code Duplication

Process

ReadConfigFiles()

ConfigurableProcess

ReadConfigFiles()

CsServer

ReadConfigFiles()

UCDLink

ReadConfigFiles()

EventReceiver

ReadConfigFiles()

TrapFile

ReadConfigFiles()

SNMPCollector

Sign #4: Schizophrenic Responsibilities

 + Money calculatePay()
 + void save()
 + String reportHours()

Employee

Multiple axis of change!

payroll
business rules

database
schema

formatting
reporting rules

Sign #5: Unexpected dependencies

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

Remaining principles help us to close modules

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

Remaining principles help us to close modules

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

Remaining principles help us to close modules

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

Remaining principles help us to close modules

Abst
ract

ion Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

!High level modules should not depend upon low level modules.
Both should depend upon abstractions.

Dependency Inversion Principle (DIP)

Design to an interface, not to an implementation!

Depending on abstractions

Car should not depend on
any concrete Engine!

Why are Java applications portable? Define abstractions

+ virtual draw() = 0
Shape

+ draw()
Square

+ draw()
Circle

void DrawAllShapes(Set<Shape*>& list) {
 for (Iterator<Shape*>i(list); i; i++)
 (*i)->draw();
}

void DrawAllShapes(ArrayList<Shape> list) {
for(Shape shape : list)

 shape.draw();
}

Closed to adding
new Shapes!

?What if Circle objects must be drawn first?

Strategic Closure

No significant program can be 100% closed.
We should seek not complete, but strategic closure!

1 Abstraction to gain strategic closure
 - insert extension “hooks” in the class

2 Data-driven approach to gain strategic closure
 - externalize volatile decisions in a separate file (preferable a configuration file)

Data-driven approach to gain closure
public class ShapeComparer : IComparer {
 private static Hashtable priorities = new Hashtable();

 static ShapeComparer() {
 priorities.Add(typeof(Circle), 1);
 priorities.Add(typeof(Square), 2);
 }

 private int PriorityFor(Type type) {
 if(priorities.Contains(type)) return (int)priorities[type];
 return 0;
 }

 public int Compare(object o1, object o2) {
 int priority1 = PriorityFor(o1.GetType());
 int priority2 = PriorityFor(o2.GetType());
 return priority1.CompareTo(priority2);
 }
} public void DrawAllShapes(ArrayList shapes) {

 shapes.Sort(new ShapeComparer());
 foreach(Shape shape in shapes)
 shape.Draw();
}

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Abstract a customizable algorithm
Process

ReadConfigFiles()

hook()

ConfigurableProcess

hook()

CsServer

UCDLink EventReceiverTrapFile

hook()

SNMPCollector

ReadConfigFiles() {

 hook();

}

Apply
Template Method

pattern

is TurboEngine
a proper substitution?

Any client-code which can legally call another class’s methods
must be able to substitute any subclass of that class without modification

DYNAMIC BINDING is necessary,

but insufficient!

Substitution is about semantics!

Substitution is about behavior!

Another troubling question: Square IS-A Rectangle?

Square

?
?

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Square IS-A Rectangle?

Square

?

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Square IS-A Rectangle?

Square

?

void shapeClient(Rectangle& r) {
r.setWidth(5); r.setHeight(4);

 // How large is the area?
}

IT DEPENDS!

what if r i
s a Square!?!

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

IS-A relation judged by
compatible behavior!

Interface = Signature + Contract
Contract of a function has 3 parts:
 1. preconditions: what does the function require to run correctly
 2. postconditions: what result does the function guarantee
 3. invariants: what does the function guarantee to be preserved

Design By Contract (DBC) = use contracts to specify interfaces

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

!When redefining a method in a derivate class,
you may only replace its precondition by a weaker one,

and its postcondition by a stronger one

Liskov Substitution Principle

Derived classes, should require no more and promise no less!

Example...

int Base::f(int x);
// REQUIRE: x is odd
// PROMISE: return even int

int Derived::f(int x);
// REQUIRE: x is int
// PROMISE: return 8

Counter-example

+ virtual fly() = 0

Bird

+ fly()
+ mimic()

Parrot

+ fly()

Penguin class Penguin extends Bird {
 ...
 public void fly() {

 }
};

void PlayWithBird (Bird aBird) {
 aBird.fly(); // OK if Parrot.
}

 error (“Penguins don’t fly!”);

?
Does NOT model:

“Penguin can’t fly”

Fails LSP!

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

! It is illegal for a derived class, to override a base-class method
with a NO-Operation (NOP) method.

Liskov Substitution Principle (corollary)

Avoiding NOP overrides
Solution 1:

Extract common base

Solution 2:
Invert inheritance

What about

stupid dogs?

from A. Riel - Object-Oriented Design Heuristics, 1996

Employee delegates the
three responsibilities!

Employee

 + Employee(IPayComputer, IDBStorer, IReportFormatter)
 + Money calculatePay()
 + void save()
 + String reportHours()

 - payComp : IPayComputer
 - dbs : IDBStorer
 - repForm : IReportFormatter

+computePayment(Employee)

<<interface>>
IPayComputer

+storeDB(Persistable)

<<interface>>
IDBStorer

+formatReport(Data)

<<interface>>
IReportFormatter

Write a brief description of the
class in about 25 words
without using the words

“if”, “and”, “or”, “but”

Is it hard?

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

!A class or module should have one, and only one, reason to change

Single Responsibility Principle (SRP)

“Fool me once shame on you; fool me twice shame on me”
…. but within a class

you shouldn’t be able to “fool me once” frequently!

An axis of change is an axis of change
only if the changes actually occur! ?but doesn’t this require more navigation

and more effort to understand a

large piece of functionality

What do you prefer?

A system with larger, multipurpose classes always hampers us
by insisting we deal with lots of things that we don’t need to know right now

+

Segregate the ATM’s
 UI interface!

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

!Clients should never be forced to depend on those methods
of a provider class that it does not use

Interface Segregation Principle (SRP)

Avoid for a client to be affected by changes that
other clients force on the provider class,

due to interface methods unilaterally used by the latter class.

Segregated ATM UI Interface

+

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

interface Transaction {
 void Execute();
}

interface DepositUI {
 void RequestDepositAmount();
}

class DepositTransaction implements Transaction {
 privateDepositUI depositUI;

 public DepositTransaction(DepositUI ui) {
 depositUI = ui;
 }
 public virtual void Execute() {
 /*code*/
 depositUI.RequestDepositAmount();
 /*code*/
 }
}

/** other transaction classes **/

public interface UI : DepositUI, WithdrawalUI, TransferUI {
}

Segregated ATM UI Interface

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Dilemma of a client function…

void client(DepositUI depUI, TransferUI transUI) { … }

vs.
void client(UI ui) { … }

vs.

void someFunction(UI ui) {
 /* … */

client(ui, ui);
 /* … */
}

void someFunction(UI ui) {
 /* … */

client(ui);
 /* … */
}

✅ ❌

ISP and SRP show two facets of cohesion

Cohesion

Single
Responsibility

Principle

 provide a coherent set of services,
focused on a unique responsibility

Interface
Segregation
Principle

 use cohesively (fully) the interfaces
on which you depend

Dependency
Inversion
Principle

Interface
Segregation
Principle

Liskov
Substitution
Principle

Open
Closed
Principle

Single
Responsibility

Principle

close class by
depending on

abstract providers

close class by
dependending only on

directly used interfaces

ensure
replaceability of

concrete provider

close class by
providing a cohesive

set of services

1
Object vs Structured

design

3
Architectural

design principles

2
S.O.L.I.D

design principles

1
Object vs Structured

design

3
Architectural

design principles

2
S.O.L.I.D

design principles

Morning-after syndrome...

many developers modify the same source files

everyone tries to adapt to the changes the others made

Weekly Build: a solution that does not scale!

Solution: depend on release versions

release
(2 pack.)

update
(1 pack.)

System can be built bottom-up!

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Evil of cyclic dependencies

All components must be released simultaneously!
update

Solution: invert dependencies!

Solution:
Invert Dependencies

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Stability of a component

Stab
le

Unst
able

Stability = Responsibility + Autonomy

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

Measuring the stability of a component

Ce Efferent coupling = how dependent?
 number of external classes on which the component depends (FANOUT)

Ca Afferent coupling = how responsible?
 number of external classes that depend on this component (FANIN)

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

An example

Ca = 4
Ce = 3
I = 3 / 7

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

!A component should only depend upon components that are
more stable than it is.

Stable Dependencies Principle

A component should depend only on component whose
I metric is lower than theirs!

Ideal Architecture

1 Most unstable (changeable) components on top

2 Most stable (hard to change) components at the bottom

Not if you make them abstract!

Doesn’t stable mean rigid? !The stability of a component should be
proportional to its abstraction!

Stable Abstractions Principle

1. Components that are maximally stable should be maximally abstract.
2. Unstable components should be concrete.

When abstraction decreases, instability should increase

A

I

from R.C.Martin, M.Micah - Agile Principles, Patterns, and Practices in C#, 2006

