
1
Object vs Structured

design

3
Architectural

design principles

2
S.O.L.I.D

design principles

Software is complex

Functional decomposition doesn’t scale!

Ripple effect of changes!

centralized control

void Copy(){
 int c;
 while ((c = ReadKeyboard()) != EOF)
 WritePrinter(c);
}

enum OutputDevice {printer, disk};
void Copy(OutputDevice dev){
 int c;
 while((c = ReadKeyboard())!= EOF)
 if(dev == printer)
 WritePrinter(c);
 else
 WriteDisk(c);
}

Read
Keyboard

Write
Printer

Copy

Write
Disk

Hang procedures on spaghetti data structures

from A. Riel - Object-Oriented Design Heuristics, 1996

Unidirectional relation between code and data

Hard to manage!

from A. Riel - Object-Oriented Design Heuristics, 1996

How is object-oriented different ? Can you use a phone?

Can you build a phone?

© Todd McLellan TODD MCLELLAN

http://www.toddmclellan.com/thingscomeapart

The power of encapsulation

!Expose interfaces that allow users to
manipulate the essence of the data,
without knowing its implementation.

Hiding implementation is about abstractions

NOT just a layer

of functions!

from A. Riel - Object-Oriented Design Heuristics, 1996

Let’s illustrate the point…

public class Square {
 public Point topLeft;
 public double side;
}

public class Rectangle {
 public Point topLeft;
 public double height;
 public double width;
}

public class Circle {
 public Point center;
 public double radius;
}

public class Geometry {  
 public final double PI = 3.1415;

 public double area(Object shape) throws NoSuchShapeException {
 if (shape instanceof Square) {

Square s = (Square)shape;
return s.side * s.side;

 }
 else if (shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;
return r.height * r.width;

 }  
 else if (shape instanceof Circle) {

Circle c = (Circle)shape;
return PI * c.radius * c.radius;

 }
 throw new NoSuchShapeException();

 }
}

✅ easy to add perimeter() ❌ hard to add Triangle
from R.C. Martin - Clean Code, 2008

public class Square implements Shape {
 private Point topLeft;  
 private double side;
 public double area() {
 return side*side;
 }
}

public class Rectangle implements Shape {
 private Point topLeft;  
 private double height;  
 private double width;
 public double area() {
 return height * width;
 }
}

public class Circle implements Shape {
 public Point center;
 public double radius;
 public final double PI = 3.1415;
 public double area() {  
 return PI * radius * radius;
 }
}

✅ easy to add Triangle ❌ hard to add perimeter()

interface Shape {
 double area();
}

from R.C. Martin - Clean Code, 2008

Data/Object Anti-Symmetry

Data structures expose data and have no significant behavior.
	 easy to add new behaviors to existing data structures
	 hard to add new data structures to existing functions.

Objects expose behavior and hide data.
	 easy to add new kinds of objects without changing existing behavior
	 hard to add new behaviors to existing objects.

from R.C. Martin - Clean Code, 2008

It’s a trade-off…

add new data types rather than new functions

add new functions as opposed to data types

versus

Object-Oriented

Procedural

Hybrid Structures

Functionality

+
Public variables

CONFUSING!

	 	 	 hard to add new functions.
	 	 	 hard to add new data structures.

from R.C. Martin - Clean Code, 2008

!Inside of a method M of a class C, you can only access data, and call functions
from the following objects:
 i. this and base-object
 ii. data members of class C [and it ancestors] (in weak form of LoD)
 iii. parameters of the method M
 iv. objects created within M
 v. global variables

Law of Demeter

Principle of Least Knowledge

An object A can call a method of an object instance B,
but object A cannot “reach through” object B

to access yet another object, to request its services.

!Law of Demeter (corollaries)

A module should not know about the innards of the objects it manipulates

An object should not expose its internal structure through accessors

Law of Demeter example

class Workstation {
 public void UpVolume(int amount) { mSound.Up(amount); }
 public SoundCard mSound;
 private GraphicsCard mGraphics;
};

Worksation sun;

...
sun.UpVolume(1); // OK!
sun.mSound.Up(1); // DON'T!

final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

Options opts = ctxt.getOptions();  
File scratchDir = opts.getScratchDir();  
final String outputDir = scratchDir.getAbsolutePath();

Law of Demeter example

still breaks

Demeter’s law!

from R.C. Martin - Clean Code, 2008

Law of Demeter example
class Mechanic {

Engine theEngine;
Mechanic (Context context) {
 this.engine = context.getEngine();
}

};

❌ Mechanic does not care about Context

❌ Can’t reuse Mechanic without Context

❌ Mechanic inherits transitively the coupling of Context

❌ The JavaDoc is lying! It hides the true dependency of Mechanic

❌ Testing requires to create the entire objects’ graph

❌ Testing pain is transitive: how do I test Shop that needs Mechanic ?

Don’t dig into collaborators

from J.Wolter, R.Ruffer, M.Hevery - Guide: Writing Testable Code, http://misko.hevery.com/code-reviewers-guide/

class SalesTaxCalculator {

TaxTable taxTable;

SalesTaxCalculator(TaxTable taxTable) { this.taxTable = taxTable; }

float computeSalesTax(User user, Invoice invoice) {

Address address = user.getAddress();  
float amount = invoice.getSubTotal();  
return amount * taxTable.getTaxRate(address);

} }

❌

✅
class SalesTaxCalculator {

TaxTable taxTable;

SalesTaxCalculator(TaxTable taxTable) { this.taxTable = taxTable; }

float computeSalesTax(Address address, float amount) {

return amount * taxTable.getTaxRate(address);

} }

String outFile = outputDir + "/" + className.replace('.', '/') + “.class";
FileOutputStream fout = new FileOutputStream(outFile);
BufferedOutputStream bos = new BufferedOutputStream(fout);

BufferedOutputStream bos = ctxt.createScratchFileStream(classFileName);

WHY is it needeed?

from R.C. Martin - Clean Code, 2008

A brilliant question...

When using handles to the internals of a class (getters/setters) ask yourself:
What is it I'm doing with this data, and why doesn't the class do it for me?

from A. Riel - Object-Oriented Design Heuristics, 1996

God Classes

capture the central control mechanism within an object-oriented design.

performs most of the work,
leaving minor details to a collection of trivial classes.

!Distribute system intelligence horizontally as uniformly as possible.
The top-level classes in a design should share the work uniformly.

Avoiding God Classes

Be very suspicious of a class whose name contains
Driver, Manager, System, or Subsystem.

Beware of classes that have many accessor methods,
as this implies that related data and behavior are not kept in one place.

Beware of non-cohesive classes, where many methods operate on a proper
subset of the data members of a class.

God classes often exhibit much noncommunicating behavior.

from A. Riel - Object-Oriented Design Heuristics, 1996

When are accessor methods OK?

1 Classes defining a collaboration policy

Prerequisite
Course

Student
(his courses)

Course addStudent()

getCourses()verify()

Student
(his courses)

Prerequisite
Course

Course addStudent()

verify()getPrereq() Justifies only getters

2 Decoupling model from UI

Justifies both

getters and setters

from A. Riel - Object-Oriented Design Heuristics, 1996

God Class (Data Form)

migration
to OO

from A. Riel - Object-Oriented Design Heuristics, 1996

Proper migration strategy

from A. Riel - Object-Oriented Design Heuristics, 1996

What about protected data?

Fruit

+ describe() : String

color
weight

Apple

+ describe() : String

- variety
- noSeeds

private or

protected?

Protected data members are breaking encapsulation.
Try to avoid them. If absolutely needed use a protected getter method.

Three frequent lies about hierarchies…

1 These data will never change Data have a highly volatile nature!

2 This hierarchy is so small
Hierarchies grow!

3 Inheritance is about reuse
Reuse is about interface!

Class hierarchies should not be very deep.
The depth should not be more than 6.

The Yo-Yo Problem

from D. Taenzer, David, M. Ganti, S. Podar - Problems in Object-Oriented Software Reuse, ECOOP, 1989

… a long and complicated inheritance graph

forces the programmer to keep flipping between many different class

definitions in order to follow the control flow of the program.

Inheritance is white/glass-box reuse

✅ language supported

❌ static bound

✅ easy to use

❌ mixture of physical data representation

Composition is black box reuse

✅ encapsulation is preserved

✅ dynamic nature

Inheritance is static and rigid

Employee

+ doTask()
+ computeSalary()

Hourly
Employee

+ computeSalary()

Commissioned
Employee

+ computeSalary()

Monthly
Employee

+ computeSalary()

What if salaries could be paid in

different ways (bank, cash etc)?

Employee

 + Employee(IPayComputer, IMoneyDistributor)
 + computeSalary()
 + distributeSalary()

 - payComp : IPayComputer
 - payMethod : IMoneyDistributor +compute(Employee)

<<interface>>
IPayComputer

+distribute(IMoneyDistributor)

<<interface>>
IMoneyDistributor

Hourly

+ compute

Monthly

+ compute

Commission

+ compute

Cash

+ distribute

BankTransfer

+ distribute

Cheque

+ distribute

Composition is dynamic and flexible

!Favour composition, over inheritance. ?What’s the proper shape of
containment hierarchies

Which Meal class would you prefer to use?

IT DOESN’T MATTER!

from A. Riel - Object-Oriented Design Heuristics, 1996

Which Meal class would you prefer to maintain?

❌

✅

from A. Riel - Object-Oriented Design Heuristics, 1996

!Containment hierarchies should be deep and narrow.

