Object vs Structured
design

Functional decomposition doesn’t scale!

Oe’ltra IiZe

main

mid 1 Mid 2 Mid 3

\
o“a“ges

Detail Detail Detail

Read
Keyhoard

Write
Printer

void Copy () {
int c;
while ((c = ReadKeyboard()) !'= EOF)
WritePrinter (c) ;

enum OutputDevice {printer, disk};
void Copy (OutputDevice dev) {
int c;
while ((c = ReadKeyboard()) != EOF)
if (dev == printer)
WritePrinter (c);
else
WriteDisk(c) ;

Hang procedures on

data structures

from A. Riel - Object-Oriented Design Heuristics, 1996

relation between code and data

< -

) \
a“ag
o ™
V

from A. Riel - Object-Oriented Design Heuristics, 1996

How is Olbject-oriented different

Can you USE a phone?

~. S i
1
Al)
Cd p
Can you bUild aphone? | (@
:;Jil(?l
we @ 111
- NN
& "

-] T {?{és”d
T 5

© Todd McLellan TODD MCLELLAN
1ttp: .toddmclellan.com/thingscomeapart

The power of encapsulation 4

Hiding implementation is about

Expose interfaces that allow users to
manipulate the essence of the data,
without knowing its implementation.

D2’s
data

£1() , ab. £4()
£20 | alls £5()
£3() 2y £6()

st A
wot caow
D1 ot W D2
>

from A. Riel - Object-Oriented Design Heuristics, 1996

Let’s illustrate the point...

public class Square { public class Rectangle { public class Circle {

public Point topLeft; public Point topLeft; public Point center;
public double side; public double height; public double radius;
3 public double width; }
}

public class Geometry {
public final double PI = 3.1415;

public double area(Object shape) throws NoSuchShapeException {
if (shape instanceof Square) {
Square s = (Square)shape;
return s.side * s.side;

else if (shape instanceof Rectangle) {
Rectangle r = (Rectangle)shape;
return r.height * r.width;

else if (shape instanceof Circle) {
Circle c = (Circle)shape;
return PI * c.radius * c.radius;
}
throw new NoSuchShapeException();
}
}

easy to add perimeter() X hard to add Triangle

from R.C. Martin - Clean Code, 2008

interface Shape {
double area();

}
public class Circle implements Shape { public class Rectangle implements Shape {
public Point center; private Point topleft;
public double radius; private double height;
public final double PI = 3.1415; private double width;
public double area() { public double area() {
return PI * radius * radius; return height * width;
} }
} }

public class Square implements Shape {
private Point topLeft;
private double side;
public double area() {
return side*side;
}
}

easy to add Triangle X hard to add perimeter()

from R.C. Martin - Clean Code, 2008

Data/Object Anti-Symmetry

Data structures expose data and have no significant behavior.
easy to add new bhehaviors to existing data structures
hard to add new data structures to existing functions.

Objects expose behavior and hide data.
easy to add new kinds of objects without changing existing behavior
hard to add new hehaviors to existing objects.

from R.C. Martin - Clean Code, 2008

I’s a trade-off...

aented \

O
ove®
Ww data types rather than new functions

versus

‘a\ \

?(0"’&6“
/ﬂm functions as opposed to data types

Hybrid Structures

Functionality

+ 00““‘5\“@-

Public variables

hard to add new functions.
hard to add new data structures.

from R.C. Martin - Clean Code, 2008

Law of Demeter

Inside of a method M of a class C, you can only access data, and call functions
from the following objects:
i. this and base-object
ii. data members of class C [and it ancestors| (in weak form of LoD)
ii. parameters of the method M
iv. ohjects created within M
v. global variables

An object A can call a method of an object instance B,
but object A cannot “reach through” object B
to access yet another object, to request its services.

Law of Demeter (corollaries)

A module should not know about the innards of the objects it manipulates

An object should not expose its internal structure through accessors

Law of Demeter example

class Workstation {
public void UpVolume(int amount) { mSound.Up(Camount); }
public SoundCard mSound
private GraphicsCard mGraphics;

1
Worksation sun;

sun.UpVolume(1); // OK!
sun.mSound.Up(1); // DON'T!

Law of Demeter example

final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

Options opts = ctxt.getOptions();
File scratchDir = opts.getScratchDir();
final String outputDir = scratchDir.getAbsolutePath(); \\

wred¥’

S
O et
s‘:t\e\e“s\a
e

from R.C. Martin - Clean Code, 2008

Law of Demeter example

class Mechanic {
Engine theEngine;
Mechanic (Context context) {
this.engine = context.getEngine();
}
1

X Mechanic does not care about Context

X Can’t reuse Mechanic without Context

X Mechani c inherits transitively the coupling of Context

X The JavaDoc is lying! It hides the true dependency of Mechanic
X Testing requires to create the entire objects’ graph

X Testing pain is transitive: how do | test Shop that needs Mechanic ?

Don’t dig into collahorators

class SalesTaxCalculator {
TaxTable taxTable;
SalesTaxCalculator (TaxTable taxTable) { this.taxTable = taxTable; }
float computeSalesTax (User user, Invoice invoice) { x
Address address = user.getAddress();

float amount = invoice.getSubTotal();
return amount * taxTable.getTaxRate (address);

o}

class SalesTaxCalculator {

TaxTable taxTable;

float computeSalesTax (Address address, float amount) {

SalesTaxCalculator (TaxTable taxTable) { this.taxTable = taxTable; } V

return amount * taxTable.getTaxRate (address);

bt

from J.Wolter, R.Ruffer, M.Hevery - Guide: Writing Testable Code, http://misko.hevery.com/cod -quide/

WHY is it needeed?

String outFile = outputDir + "/" + className.replace('."', '/') + “.class";
FileOutputStream fout = new FileOutputStream(outFile);
BufferedOutputStream bos = new BufferedOutputStream(fout);

BufferedOutputStream bos = ctxt.createScratchFileStream(classFileName);

from R.C. Martin - Clean Code, 2008

A brilliant question...

Rogm

Desired Te got_desired_tomp()
get_actual_temp()

Actual Temp "N Heat Flow Furnace
Regulator
Occupancy ; (

When using handles to the internals of a class (getters/setters) ask yourself:

What is it I'm doing with this data, and why doesn't the class do it for me?

Room

Desired Temp

do_you_need_heat?()
Actual Temp | |4——— ll-{lz‘;:;:?:: Furnace

Occupancy

from A. Riel - Object-Oriented Design Heuristics, 1996

God Classes

capture the central control mechanism within an object-oriented design.

performs mest of the work,
leaving minor details to a collection of trivial classes.

Avoiding God Classes

Distribute system intelligence horizontally as uniformly as possible.
The top-level classes in a design should share the work uniformly.

Be very suspicious of a class whose name contains

Driver, Manager, System, Or Subsystem.

Beware of classes that have many accessor methods,
as this implies that related data and behavior are not kept in one place.

Beware of non-cohesive classes, where many methods operate on a proper
subset of the data members of a class.

God classes often exhibit much noncommunicating behavior.

from A. Riel - Object-Oriented Design Heuristics, 1996

When are accessor methods 0K?

| Classes defining a collaboration policy

verify()

getCourses() getPrereq()

addstudent)

Course |addStudent()

from A. Riel - Object-Oriented Design Heuristics, 1996

God Class (Data Form)

callProcessingBlock

The callProcessingBlock Class

CallProcessingBlock get_datal()

set_datal()
datal get_data2()
data2 set_data2()
data3 get_data3()

set_data3()

accessor method calls / .\«(\‘\an hod cal \a. v I

ControllerClassl ControllerClass2 ControllerClass3

from A. Riel - Object-Oriented Design Heuristics, 1996

Proper migration strategy

CallProcessingBlock

\

|G || G | | @

TelephonyClassl TelephonyClass2 TelephonyClass3

from A. Riel - Object-Oriented Design Heuristics, 1996

What about protected data?

+ describe() : String

Apple

- variety
- noSeeds

+ describe() : String

Protected data members are breaking encapsulation.
Try to avoid them. If absolutely needed use a protected getter method.

Three frequent lies about hierarchies...

Inheritance is about reuse

The Yo-Yo Problem

... along and complicated inheritance graph
forces the programmer to keep flipping between many different class

definitions in order to follow the control flow of the program.

Class hierarchies should not be very deep.
The depth should not be more than 6.

from D. Taenzer, David, M. Ganti, S. Podar - Problems in Object-Oriented Software Reuse, ECOOP, 1989

Inheritance is white/glass-hox reuse

language supported
easy to use
X static bound

XK mixture of physical data representation

Composition is black box reuse

encapsulation is preserved

dynamic nature

Inheritance is static and rigid

Employee

+ doTask()
+ computeSalary()

AN

Hourly Monthly C issi d
Employee Employee Employee
+ computeSalary() + computeSalary() +computeSalary()
QW
a\° Y
o wel Qo
AeS (v S
. sa\a“
a ys
W “‘\Na
e’

Composition is dynamic and flexible

IMoneyDistributor
+distribute(IMoneyDistributor)

Cash BankTransfer Cheque

+ distribute + distribute + distribute

Hourly
+ compute
Employee
Monthly
- payComp : IPayComputer IPayComputer
- payMethod : IMoneyDistributor e +compute(Employee) :] + compute
+ Employee(IPayComputer, IMoneyDistributor)
+ computeSalary() Commission
+ distril Y0
+ compute
<<interface>>

Favour composition, over inheritance.

What'’s the proper Shape of

containment hierarchies

Which Meal class would you prefer to use? Which Meal class would you prefer to maintain?

Meal Meal

|Melon| ISteakl | Peas] | Corn I |Melon| ISteakI ‘ Peas l | Corn I x

Meal
SteakPlatter SteakPlatter

—
Melon Trimmings Pie Melon Trimmings Pie V
e — v

from A. Riel - Object-Oriented Design Heuristics, 1996 from A. Riel - Object-Oriented Design Heuristics, 1996

Containment hierarchies should be deep and narrow.

