
Good Object-Oriented Design

Dr. Radu Marinescu 1

Good Object-Oriented Design
Setting the stage ...

1946
Good Object-Oriented Design

Dr. Radu Marinescu 4

Key Design Issues

Main purpose - Manage software system complexity
by ...

... improving software quality factors

... facilitating systematic reuse

Good Object-Oriented Design

Dr. Radu Marinescu 5

What is Good Design?
! The temptation of "correct design"

! insurance against "design catastrophes"
! design methods that guarantee the "correct design"

! Need of criteria for evaluating a design
! Need of principles and rules for creating good designs

A good design is one that balances trade-offs to minimize the total cost
of the system over its entire lifetime

[…]
a matter of avoiding those characteristics that lead to bad

consequences.
Coad & Jourdon

There is no correct design! You must decide!

Good Object-Oriented Design

Dr. Radu Marinescu 6

What is Good Design?

Good Object-Oriented Design

Dr. Radu Marinescu 7

From Journeyman to Master

Pieces,
Moves

Criteria,
Principles,
Heuristics

Contextual
Solutions

What is
Good?

How to Apply
"Good"?

How to
Play?

Good Object-Oriented Design

Dr. Radu Marinescu 8

Stages of Learning
! Learn the Rules!

! algorithms, data structures and languages of software
! write programs, although not always good ones

! Learn the Principles!
! software design, programming paradigms with pros and cons
! importance of cohesion, coupling, information hiding, dependency management

! Learn the Patterns!
! study the "design of masters"
! Understand! Memorize! Apply!

Good Object-Oriented Design

Dr. Radu Marinescu 9

Citing Robert Martin ...

"... But to truly master software design,
one must study the designs of other masters.

Deep within those designs are patterns that can be used in
other designs.

Those patterns must be understood, memorized, and applied
repeatedly until they become second nature."

Good Object-Oriented Design

Dr. Radu Marinescu 10

Where Do We Stand ?

! We know the Rules
! 1-2 OO programming language (Java, C++)
! some experience in writing programs (< 10 KLOC)

! We heard about Principles
! "Open-Closed"; "Liskov Substitution Principle" etc.
! randomly applied some of them

! We dream of becoming "design masters" but...

! …we believe that writing good software is somehow
"magic"
! exclusively tailored for geniuses, "artists", gurus ;-)

Good Object-Oriented Design

Dr. Radu Marinescu 11

A Roadmap

! What is Good Design?
! Goals of Design
! Key Concepts and Principles
! Criteria for Good Design
! Principles and Rules of Good Design

! What is Good Object-Oriented Design?
! Guidelines, Rules, Heuristics

! How to Apply Good Design?
! Design Patterns
! Architectural Patterns (Styles)

Good Object-Oriented Design

Dr. Radu Marinescu 12

Criteria and Principles of Good Design

Good Object-Oriented Design

Dr. Radu Marinescu 13

Modularity

! A modular system is one that's structured into identifiable
abstractions called components
! Components should possess well-specified abstract interfaces
! Components should have high cohesion and low coupling

A software construction method is modular
if it helps designers produce software systems

made of autonomous elements
connected by a coherent, simple structure.

B. Meyer

Good Object-Oriented Design

Dr. Radu Marinescu 14

Meyer's Five Criteria for Evaluating Modularity

! Decomposability
! Are larger components decomposed into smaller components?

! Composability
! Are larger components composed from smaller components?

! Understandability
! Are components separately understandable?

! Continuity
! Do small changes to the specification affect a localized and limited number

of components?

! Protection
! Are the effects of run-time abnormalities confined to a small number of

related components?

Good Object-Oriented Design

Dr. Radu Marinescu 15

1. Decomposability

! Decompose problem into smaller sub-problems that can be
solved separately
! Goal: Division of Labor

" keep dependencies explicit and minimal
! Example: Top-Down Design
! Counter-example: Initialization Module

" initialize everything for everybody

Good Object-Oriented Design

Dr. Radu Marinescu 16

2. Composability

! Freely combine modules to produce new systems
! Reusability in different environments → components
! Example: Math libraries; UNIX command & pipes
! Counter-example: use of pre-pocessors

Good Object-Oriented Design

Dr. Radu Marinescu 17

Decomposability and Composability

The second [precept I devised for myself] was to divide
each of the difficulties which I would examine into as
many parcels as it would be possible and required to

solve it better.

The third was to drive my thoughts in due order,
beginning with these objects most simple and easiest to

know, and climbing little by little, so to speak by degrees,
up to the knowledge of the most composite ones; and

assuming some order even between those which do not
naturally precede one another.

Rene Decartes

Good Object-Oriented Design

Dr. Radu Marinescu 18

3. Understandability

! Individual modules understandable by human reader
! Counter-example: Sequential Dependencies (A | B | C)

" contextual significance of modules

Good Object-Oriented Design

Dr. Radu Marinescu 19

4. Continuity

! Small change in requirements results in:
! changes in only a few modules does not affect the architecture
! Example: Symbolic Constants
! Counter-Example: static arrays

Good Object-Oriented Design

Dr. Radu Marinescu 20

5. Protection

! Effects of an abnormal run-time condition is confined to a
few modules
! Example: Validating input at source
! Counter-example: Undisciplined exceptions

Good Object-Oriented Design

Dr. Radu Marinescu 21

Meyer's Five Rules of Modularity
! Direct Mapping

! consistent relation between problem model and solution structure

! Few Interfaces
! Every component should communicate with as few others as possible

! Small Interfaces
! If any two components communicate at all, they should exchange as little information as

possible

! Explicit Interfaces
! Whenever two components A and B communicate, this must be obvious from the text of A

or B or both

! Information Hiding

Good Object-Oriented Design

Dr. Radu Marinescu 22

1. Direct Mapping

! Keep the structure of the solution compatible with the
structure of the modeled problem domain
! clear mapping (correspondence) between the two

Impact on:
! Continuity

! easier to assess and limit the impact of change

! Decomposability
! decomposition in the problem domain model as a good starting point for the

decomposition of the software

Good Object-Oriented Design

Dr. Radu Marinescu 23

2. Few Interfaces

! Every module should communicate with as few others as
possible
! rather n-1 than n(n-1)/ 2

anarchiccentralized distributed

Good Object-Oriented Design

Dr. Radu Marinescu 24

3. Small Interfaces

! If two modules communicate, they should exchange as
little information as possible
! limited "bandwidth" of communication

4. Explicit Interfaces

! Whenever two modules A and B communicate, this must be
obvious from the text of A or B or both.

Good Object-Oriented Design

Dr. Radu Marinescu 25

4. Explicit Interfaces (2)

! The issue of indirect coupling
! data sharing

Module A Module B

Data Item
x

modifies
accesses

Good Object-Oriented Design

Dr. Radu Marinescu 26

Rule 2 + Rule 3 + Rule 4 Rephrased

! Few Interfaces: “Don’t talk to many!”

! Small Interfaces: “Don’t talk a lot!”

! Explicit Interfaces: “Talk loud and in public! Don’t
whisper!”

Good Object-Oriented Design

Dr. Radu Marinescu 27

5. Information Hiding

Motivation: design decisions that are subject to change
should be hidden behind abstract interfaces, i.e.
components
! Components should communicate only through well-defined interfaces
! Each component is specified by as little information as possible

! Continuity: If internal details change, client components
should be minimally affected
! not even recompiling or linking

Good Object-Oriented Design

Dr. Radu Marinescu 28

Abstraction vs. Information Hiding

Information hiding is one means to enhance abstraction!

