
Good Object-Oriented Design

Dr. Radu Marinescu 170

Creational Patterns

Good Object-Oriented Design

Dr. Radu Marinescu 171

Overview of creational patterns

! Abstract the instantiation process
! Help make a system independent of how its objects are created, 

composed, represented

! Class creational pattern 
!uses inheritance to vary the class that’s instantiated
!Factory Method

! Object creational pattern 
!delegates instantiation to another object
!Abstract Factory, Prototype, Singleton, Builder

class ApplicationClass   {
   Widget a;
   Widget b;
  
   public appMethod1()   {
      Widget d = new Widget();
      d.widgetMethod1();
      // . . .
      Widget e = new Widget();
      // . . .
   }
 
   public appMethod2()   {
      // . . .
      Widget f = new Widget();
      f.widgetMethod1();
      // . . .
      Widget g = new Widget();
      // . . .
   }
   // etc. etc . . .

Good Object-Oriented Design

Dr. Radu Marinescu 172

Let’s start simple...

We can modify the internal Widget code without modifying the 
ApplicationClass

Good Object-Oriented Design

Dr. Radu Marinescu 173

Problems with Changes

What happens when we discover a new widget and would like to use 
in the ApplicationClass?

Multiple coupling between Widget and ApplicationClass
!ApplicationClass knows the interface of Widget

!ApplicationClass explicitly uses the Widget type
" hard to change because Widget is a concrete class

!ApplicationClass explicitly creates new Widgets in many places
" if we want to use the new Widget instead of the initial one, changes are 

spread all over the code



class ApplicationClass   {
   AbstractWidget a;
   AbstractWidget b;
  
   public appMethod1()   {
      AbstractWidget d = new Widget();
      d.widgetMethod1();
      // . . .
      AbstractWidget e = new Widget();
      blah;
  }
 
 etc.
}

Good Object-Oriented Design

Dr. Radu Marinescu 174

Apply “Program to an Interface”

! ApplicationClass depends now on an (abstract) interface

! But we still have hard coded which widget to create!
!should I copy-paste? ;-)

Good Object-Oriented Design

Dr. Radu Marinescu 175

Use a Factory Method

class ApplicationClass   {
   AbstractWidget a;
   AbstractWidget b;
  
   // If C++ make this a virtual function
   // and use pointers to ApplicationClass obj.
 
   public AbstractWidget createWidget() {
      return new Widget();
   }
     
   public appMethod1()   {
      AbstractWidget d = createWidget();
      d.widgetMethod1();
      // . . .
      AbstractWidget e = createWidget();
      // . . .
   }
   // . . .
}
class ApplicationClassB extends ApplicationClass {
   public AbstractWidget createWidget() {
      return new WidgetB();
   }
}

Elsewhere …
 
ApplicationClass test = new ApplicationClassB();
test.appMethod1();

Good Object-Oriented Design

Dr. Radu Marinescu 177

Factory Method is a Creational Template Method...

a.k.a hooks



Good Object-Oriented Design

Dr. Radu Marinescu 178

Evaluation of Factory Method Solution

! Explicit creation of Widget objects is not anymore dispersed 
!easier to change

! Functional methods in ApplicationClass are decoupled from 
various concrete implementations of  widgets

!  Avoid ugly code duplication in ApplicationClassB
!subclasses reuse the functional methods, just implementing the 

concrete Factory Method needed 

! Disadvantages
!create a subclass only to override the factory-method
!can’t change the Widget at run-time

Good Object-Oriented Design

Dr. Radu Marinescu 179

Factory Method

Good Object-Oriented Design

Dr. Radu Marinescu 180

Basic Aspects

! Intent
!Define an interface for creating an object, but let subclasses decide 

which class to instantiate.
!Factory Method lets a class defer instantiation to subclasses

! Also Known As
!Virtual Constructor

! Applicability
!A class can’t anticipate the class of objects it must create
!A class wants its subclasses to specify the objects it creates
!Classes delegate responsibility to one of several helper subclasses

Good Object-Oriented Design

Dr. Radu Marinescu 181

Structure



Good Object-Oriented Design

Dr. Radu Marinescu 182

Participants & Collaborations
! Product

! defines the interface of objects that will be created by the FM
! Concrete Product implements the interface

! Creator
! declares the FM, which returns a product of type Product.

" may define a default implementation of the FM
" may call the FM to create a product 

! ConcreteCreator
! overrides FM to provide an instance of ConcreteProduct

Creator relies on its subclasses to define the factory method so that it returns 
an instance of the appropriate ConcreteProduct

Good Object-Oriented Design

Dr. Radu Marinescu 183

Consequences

! Eliminate binding of application specific classes into your code. 
!creational code only deals with the Product interface

! Provide hooks for subclassing
!subclasses can change this way the product that is created

! Clients might have to subclass the Creator just to create a particular 
ConcreteProduct object.

Good Object-Oriented Design

Dr. Radu Marinescu 184

Implementation Issues

! Varieties of Factory Methods
!Creator class is abstract 

" does not provide an implementation for the FM it declares
" requires subclasses 

!Creator is a concrete class 
" provides default implementation
" FM used for flexibility
" Create objects in a separate operation so that subclasses can override it

! Parametrization of Factory Methods
!A variation on the pattern lets the factory method create multiple 

kinds of products
!a parameter identifies the type of Product to create
!all created objects share the Product interface

Good Object-Oriented Design

Dr. Radu Marinescu 185

Parameterizing the Factory
class Creator { 
    public Product create(productId) {

  if (id == MINE) return new MyProduct;
  if (id == YOURS) return new YourProduct;   

    }
}

class MyCreator extends Creator  { 
  public Product create(productId) {
   if (id == MINE) return new YourProduct;
   if (id == YOURS) return new MyProduct;
   if (id == THEIRS) return new TheirProduct;
   return super.create(id); // called if others fail
}

! selectively extend or change products that get created



Good Object-Oriented Design

Dr. Radu Marinescu 186

Java: forName and Factory Methods

class Creator {
     public Product FactoryMethod(String productType) {
        Class productClass = Class.forName(productType);
        return (Product) productClass.newInstance();          
     }
}

Product theBest = new Creator().FactoryMethod("ProductA");

import java.util.*;
 
class AbstractFactory {
    public Product make(String c) {
     try {
         Class prod = Class.forName(c);
         return (Product) prod.newInstance();
     } 
     catch(Exception e) { 
         System.out.println("Error");  
         System.exit(1); 
         return null;
     }
    }
}
 
 
 

class Main {
    public static void main(String[] args) {
     AbstractFactory af = new AbstractFactory();
 
     af.make(args[0]).doSomething();
    }
}
 

abstract class Product {
    abstract public void doSomething();
}
 
class ProductA extends Product {
    public void doSomething() {
     System.out.println("ProductA");
    }
}
 
class ProductB extends Product {
    public void doSomething() {
     System.out.println("ProductB");
    }
}

Good Object-Oriented Design

Dr. Radu Marinescu 188

Another solution for the example:
Factory Method in Product

Good Object-Oriented Design

Dr. Radu Marinescu 189

Solution 2.1: Product Creates Itself

Provide the Widgets with a polymorphic creational method 

class Widget {
   int data;
  
   public WidgetB create() {

return new WidgetB();
   }
}

create()

create() create()



Good Object-Oriented Design

Dr. Radu Marinescu 190

Solution 2.2: Product Clones Itself
Provide the Widgets with a clone method 
!make a copy of an existing Widget object

class Widget {
   int data;
  
   public Widget clone() {
      Widget aCopy = new Widget();
      aCopy.data = data;
      return aCopy;
   }
}

clone()

clone() clone()

Good Object-Oriented Design

Dr. Radu Marinescu 191

Using the Clone

class ApplicationClass   {
   AbstractWidget a;
   AbstractWidget b;
   AbstractWidget prototype;
  
   public ApplicationClass(AbstractWidget cloneMe ) {
      prototype = cloneMe;
   }
     
   public appMethod1()   {
      AbstractWidget d = prototype.clone();
      d.widgetMethod1();
      // . . .
      AbstractWidget e = prototype.clone();
      // . . .
   }
 
   // ...etc. etc...
}

Good Object-Oriented Design

Dr. Radu Marinescu 192

Elsewhere:
ApplicationClass test =
   new ApplicationClass( new Widget() );
 
ApplicationClass testB =
   new ApplicationClass( new WidgetB() );

Good Object-Oriented Design

Dr. Radu Marinescu 193

Advantages

! Classes to instantiate may be specified dynamically
!client can install and remove prototypes at run-time
  

! We avoided subclassing of ApplicationClass
!Remember: Favor Composition over Inheritance! :-)

! Totally hides concrete product classes from clients 
!Reduces implementation dependencies

 



Good Object-Oriented Design

Dr. Radu Marinescu 194

The Prototype Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 195

Basic Aspects

! Intent
! Specify the kinds of objects to create using a prototypical instance 
! Create new objects by copying this prototype

! Applicability
! when a client class should be independent of how its products are created, composed, and 

represented  and
! when the classes to instantiate are specified at run-time

Good Object-Oriented Design

Dr. Radu Marinescu 196

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 197

Consequences

! Adding and removing products at run-time
! Reduced subclassing

!avoid parallel hierarchy for creators

! Each subclass of Prototype must implement clone
!difficult when classes already exist or
! internal objects don't support copying or have circular references



Good Object-Oriented Design

Dr. Radu Marinescu 198

Implementation Issues

! Using a Prototype manager
!number of prototypes isn't fixed

" keep a registry ! prototype manager

!clients instead of knowing the prototype know a manager 
" associative store

! Initializing clones
!heterogeneity of initialization methods
!write an Initialize method

! Implementing the clone operation
!shallow vs. deep copy

Good Object-Oriented Design

Dr. Radu Marinescu 199

Shallow Copy vs. Deep Copy

Original

Shallow Copy

Good Object-Oriented Design

Dr. Radu Marinescu 200

Shallow Copy vs. Deep Copy (2)

Original

Deep Copy

Good Object-Oriented Design

Dr. Radu Marinescu 201

Cloning in Java – Object clone()

protected Object clone() throws CloneNotSupportedException

! Creates a clone of the object. 
! allocate a new instance and,
! place a bitwise clone of the current object in the new object.

class Device implements Cloneable  {
  public void Initialize( Widget a, Widget b) { 
    w1 = a; w2 = b; 
  }

  public Object clone() throws CloneNotSupportedException {
          return super.clone();
  }
  Widget w1, w2;
}



Good Object-Oriented Design

Dr. Radu Marinescu 202

More Changes...
What if ApplicationClass uses other "products" too...Wheels, Cogs, etc.

Good Object-Oriented Design

Dr. Radu Marinescu 203

More Changes

! Each one of these stays for an object family
! i.e. all of these have subclasses

! Assume that there are restrictions on what type of Widget can be 
used with which type of Wheel or Cog

! Factory Methods or Prototypes can handle each type of product but 
it get hard to insure the wrong types of items are not used together

 

class ApplicationClass   {
   AbstractWidget a;
   AbstractCog b;
   AbstractFactory partFactory;
   
   public ApplicationClass(AbstractFactory aFactory)    
   {
      partFactory = aFactory;
   }
      
   public appMethod1()   
   {
      AbstractWidget d = partFactory.makeWidget();
      d.widgetMethod1();
      // ... 
      AbstractCog e = partFactory.makeCog();
   } // .... 
}

Good Object-Oriented Design

Dr. Radu Marinescu 204

Solution: Create an Abstract Factory

Good Object-Oriented Design

Dr. Radu Marinescu 205

Abstract Factory



Good Object-Oriented Design

Dr. Radu Marinescu 206

Basic Aspects

! Intent
!Provide an interface for creating families of related or dependent 

objects without specifying their concrete classes

! Applicability
!System should be independent of how its products are created, 

composed and represented
!System should be configured with one of multiple families of products
!Need to enforce that a family of product objects is used together 

Good Object-Oriented Design

Dr. Radu Marinescu 207

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 208

Participants & Collaborations

! Abstract Factory
!declares an interface for operations to create abstract products

! ConcreteFactory
! implements the operations to create products

! AbstractProduct
!declares an interface for a type of product objects

! ConcreteProduct
!declares an interface for a type of product objects

! Client
!uses only interfaces decl. by AbstractFactory and AbstractProduct

! A single instance of a ConcreteFactory created.
!create products having a particular implementation

Good Object-Oriented Design

Dr. Radu Marinescu 209

Consequences

! Isolation of concrete classes
!appear in ConcreteFactories not in client's code

! Exchanging of product families becomes easy
!a ConcreteFactory appears only in one place 

" easy to change

! Promotes consistency among products
!all products in a family change at once, and change together

! Supporting new kinds of products is difficult
! requires a change in the interface of AbstractFactory
! ... and consequently all subclasses



Good Object-Oriented Design

Dr. Radu Marinescu 210

Implementation Issues

! Factories as Singletons
! to assure that only one ConcreteFactory per product family is 

created

! Creating the Products
!collection of Factory Methods
!can be also implemented using Prototype

" define a prototypical instance for each product in ConcreteFactory

! Defining Extensible Factories
!a single factory method with parameters
!more flexible, less safe!

Good Object-Oriented Design

Dr. Radu Marinescu 211

Creating Products...

! ...using own factory methods

abstract class WidgetFactory {
   public Window createWindow();
   public Menu createMenu();
   public Button createButton();
}

class MacWidgetFactory extends WidgetFactory {
     public Window createWindow()
       { return new MacWindow() }          
     public Menu createMenu()
       { return new MacMenu() }         
     public Button createButton()
       { return new MacButton()  }
}    

abstract class WidgetFactory {
   private Window windowFactory;
   private Menu menuFactory;
   private Button buttonFactory;
 
  protected WidgetFactory(Window w, Menu m, Button b) {
      windowFactory = w; menuFactory = m; buttonFactory = b; 
  }

   public Window createWindow()
      { return windowFactory.createWindow() }
   public Menu createMenu();
      { return menuFactory.createMenu() }
   public Button createButton()
      { return buttonFactory.createButton() }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Creating Products...
! ... using product's factory methods

! subclass just provides the concrete products in the constructor
! spares the re-implementation of FM's in subclasses

212

class MacWidgetFactory extends WidgetFactory {
   public MacWidgetFactory() {
      super(new MacWindow(), new MacMenu(), new MacButton();
   }
}    

Good Object-Oriented Design

Dr. Radu Marinescu

Singletons

213

public class Singleton {
   protected Singleton() {
     // ... }
 

   static private Singleton _instance = null;
 
   static public Singleton instance() {
      if(null == _instance) {
         _instance = new Singleton();
      }
      return _instance;
   }
 
 
}



Good Object-Oriented Design

Dr. Radu Marinescu

Why Use Singletons?

214

! Controlled access to sole instance

! Permits refinement of operations and representation

! Permits a variable (but precise) number of instances

public interface SingletonFactoryMethod {
   public Singleton createInstance();
}

public class SingletonWrapper {
   static private SingletonFactoryMethod _factory = null;

   static private Singleton _instance = null;
 
   static public Singleton instance() {
      if(null == _instance)
         if(null == _factory) _instance = new Singleton();
         else _instance = _factory.createInstance();
      }
      return _instance;
   }
 
  static public void setFactory(SingletonFactoryMethod factory) { 
      _factory = factory; _instance = null;}
}

Good Object-Oriented Design

Dr. Radu Marinescu

One Singleton for many Instances ;-)

215


