
Good Object-Oriented Design

Dr. Radu Marinescu 153

Introduction to Design Patterns

Good Object-Oriented Design

Dr. Radu Marinescu

Origins of Patterns in Architecture
! C. Alexander: problem of objective quality

! by making observations of buildings, towns, streets, gardens,
! he discovered that high quality constructs had things in common
! architectural structures differed from each others, even it they were of the same type

solving the same problem. Yet different solutions were of high quality.

! Conclusion: structures could not be separated from the problem they are solving
! ...so he looked at different structures yielding a high quality solution to same

problem and extracted the core of the solution, i.e. the patterns.

" Alexanders patterns
! solutions to a problem in a context
! 253 patterns covering regions, towns, transportations, homes offices, rooms,

lighting, gardens, ...
! a generative pattern language

154

Good Object-Oriented Design

Dr. Radu Marinescu 155

Design Patterns
" Design patterns represent solutions to problems that arise when

developing software within a particular context
! Patterns = Problem/Solution pair in Context

" Capture static and dynamic structure and collaboration among key
participants in software designs
! key participant – major abstraction that occur in a design problem
! useful for articulating the how and why to solve non-functional forces.

" Facilitate reuse of successful software architectures and design
! i.e. the “design of masters”! ;)

Good Object-Oriented Design

Dr. Radu Marinescu 156

Example: Data-Views Consistency Problem

Good Object-Oriented Design

Dr. Radu Marinescu 157

Example: The Observer Pattern
" Intent

! Define a one-to-many dependency between objects so that when one object
changes state, all its dependencies are notified and updated automatically

" Forces
! There may be many observers
! Each observer may react differently to the same notification
! The data-source (subject) should be as decoupled as possible from the observer

! to allow observers to change independently of the subject

Good Object-Oriented Design

Dr. Radu Marinescu 158

Structure of the Observer Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 159

Collaboration in the Observer Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 160

What Makes it a Pattern ?

A pattern must...

" ...solve a problem
! i.e. it must be useful

" ...have a context
! it must describe where the

solution can be used

" ...recur
! must be relevant in other

situations

" ... teach
!provide sufficient understanding

to tailor the solution

" ... have a name
! referred consistently

Good Object-Oriented Design

Dr. Radu Marinescu 161

GoF Form of a Design Pattern
Pattern name and classification
Intent

what does pattern do
Also known as

other known names of pattern (if any)
Motivation

the design problem
Applicability

situations where pattern can be applied
Structure

a graphical representation of classes in the pattern
Participants

the classes/objects participating and their responsibilities
Collaborations

of the participants to carry out responsibilities

Good Object-Oriented Design

Dr. Radu Marinescu 162

GoF Form of a Design Pattern (contd.)

Consequences
trade-offs, concerns

Implementation
hints, techniques

Sample code
code fragment showing possible implementation

Known uses
patterns found in real systems

Related patterns
closely related patterns

Good Object-Oriented Design

Dr. Radu Marinescu 163

Classification of Design Patterns

" Creational Patterns
! deal with initializing and configuring classes and objects
! how am I going to create my objects?

" Structural Patterns
! deal with decoupling the interface and implementation of classes and objects
! how classes and objects are composed to build larger structures

" Behavioral Patterns
! deal with dynamic interactions among societies of classes and objects
! how to manage complex control flows (communications)

Good Object-Oriented Design

Dr. Radu Marinescu 164

Drawbacks of Design Patterns

" Patterns do not lead to direct code reuse

" Patterns are deceptively simple

" Teams may suffer from patterns overload

Good Object-Oriented Design

Dr. Radu Marinescu 165

Key Mechanisms in Design Patterns

Good Object-Oriented Design

Dr. Radu Marinescu 166

GoF Design Principle no. 1

" Use interfaces to define common interfaces
! and/or abstract classes in C++

" Declare variables to be instances of the abstract class
! not instances of particular classes

" Use Creational patterns
! to associate interfaces with implementations

Program to an interface, not an implementation

Benefits
!Greatly reduces the implementation dependencies

!Client objects remain unaware of the classes that implement the objects they use.

!Clients know only about the abstract classes (or interfaces) that define the interface.

Good Object-Oriented Design

Dr. Radu Marinescu 167

Class vs. Object Patterns
" Mechanisms of reuse

! White-box vs. Black-box

" Class Inheritance
! easy to use; easy to modify

! implementation being reused;
! language-supported
! static bound ! can't change at run-time;
! mixture of physical data representation ! breaks encapsulation

! change in parent ! change in subclass

" Object Composition
! objects are accessed solely through their interfaces

! no break of encapsulation
! any object can be replaced by another at runtime

! as long as they are the same type

Good Object-Oriented Design

Dr. Radu Marinescu 168

Design Principle no. 2

Favor composition over class inheritance

" Keeps classes focused on one task

" Inheritance and Composition Work Together!
!ideally no need to create new components to achieve reuse

!this is rarely the case!
!reuse by inheritance makes it easier to make new components

! modifying old components

" Tendency to overuse inheritance as code-reuse technique

" Designs – more reusable by depending more on object composition

