
Good Object-Oriented Design

Dr. Radu Marinescu 73

Changing the Guts

Good Object-Oriented Design

Dr. Radu Marinescu 74

Changing the "Guts" of an Object ...

! Optimize

!use an alternative algorithm to implement behavior (Strategy)

! Alter

!change behavior when object's state changes (State)

! Control

! "shield" the implementation from direct access (Proxy)

! Decouple

! let abstraction and implementation vary independently (Bridge)

Good Object-Oriented Design

Dr. Radu Marinescu 75

Strategy Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 76

Java Layout Managers

! GUI container classes in Java

! frames, dialogs, applets (top-level)

!panels (intermediate)

! Each container class has a layout manager

!determine the size and position of components

!20 types of layouts

!~40 container-types

! imagine to combine them

 freely by inheritance ;)

! Consider also sorting...

!open-ended number of

 sorting criteria

Good Object-Oriented Design

Dr. Radu Marinescu 77

Basic Aspects

! Intent

!Define a family of algorithms, encapsulate each one, and make
them interchangeable

!Let the algorithm vary independently from clients that use it

! Applicability

!You need different variants of an algorithm

!An algorithm uses data that clients shouldn't know about
" avoid exposing complex, algorithm-specific data structures

!Many related classes differ only in their behavior
" configure a class with a particular behavior

Good Object-Oriented Design

Dr. Radu Marinescu 78

Structure

import java.awt.*;
class FlowExample extends Frame {

 public FlowExample(int width, int height) {
 setTitle("Flow Example");
 setSize(width, height);
 setLayout(new FlowLayout(FlowLayout.LEFT));

 for (int label = 1; label < 10; label++)
 add(new Button(String.valueOf(label)));
 show();
 }

 public static void main(String args[]) {
 new FlowExample(175, 100);
 new FlowExample(175, 100);
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Strategy Applied on Example

79

Good Object-Oriented Design

Dr. Radu Marinescu 80

Participants

! Strategy

!declares an interface common to all supported algorithms.

!Context uses this interface to call the algorithm defined by a
ConcreteStrategy

! ConcreteStrategy

! implements the algorithm using the Strategy interface

! Context

!configured with a ConcreteStrategy object

!may define an interface that lets Strategy objects to access its
data

Good Object-Oriented Design

Dr. Radu Marinescu 81

Positive Consequences

! Families of related algorithms

!usually provide different implementations of the same behavior

!choice decided by time vs. space trade-offs

! Alternative to subclassing

!see examples with layout managers (Strategy solution, here)

!We still subclass the strategies...Why is this a big deal? ;)

! Eliminates conditional statements

!many conditional statements ! "invitation" to apply Strategy!

Good Object-Oriented Design

Dr. Radu Marinescu 82

Negative Consequences

! Communication overhead between Strategy and Context

!some ConcreteStrategies don't need information passed from
Context

! Clients must be aware of different strategies

!clients must understand the different strategies
SortedList studentRecords = new SortedList(new ShellSort());

! Increased number of objects

!each Context uses its concrete strategy objects

!can be reduced by keeping strategies stateless (share them)

Good Object-Oriented Design

Dr. Radu Marinescu 83

Implementation

! How does data flow between Context and Strategies?

!Approach 1: take data to the strategy
" decoupled, but might be inefficient

!Approach 2: pass Context itself and let strategies take data
" Context must provide a more comprehensive access to its data

" thus, more coupled

! In Java strategy hierarchy might be inner classes

! Making Strategy object optional

!provide Context with default behavior
" if default used no need to create Strategy object

!don't have to deal with Strategy unless you don't like the default
behavior

Good Object-Oriented Design

Dr. Radu Marinescu 84

When Behavior Depends on State...

Good Object-Oriented Design

Dr. Radu Marinescu 85

Example: SPOP

! SPOP = Simple Post Office Protocol

!used to download emails from server

! SPOP supports the following commands:

!USER <username>

!PASS <password>

!LIST

!RETR <message number>

!QUIT

! USER & PASS commands

!USER with a username must come first

!PASS with a password or QUIT must come after USER

! If the username and password are valid, the user can use other
commands

Good Object-Oriented Design

Dr. Radu Marinescu 86

SPOP (contd.)

! LIST command

!Arguments: a message-number (optional)

!Returns: size of message in octets
" if message number, returns the size of that message

" otherwise return size of all mail messages in the mail-box

! RETR command

!Arguments: a message number

!Returns: the mail message indicated by that number

! QUIT command

!Arguments: none

!updates mailbox to reflect transactions taken during the
transaction state, the logs user out

! if session ends by any method except the QUIT command, the
updates are not done

Good Object-Oriented Design

Dr. Radu Marinescu 87

SPOP States

Good Object-Oriented Design

Dr. Radu Marinescu 88

Our "Dear, Old" Switches in Action ;)

! ...as you see in the code (on next slide)

! long functions

!complex switches

!same switches occur repeatedly in different functions

! Think about adding a new state to the protocol...

!changes all the code

!not Open-Closed

! Why?

!object's behavior depends on its state

class Spop {
 static final int HAVE_USER_NAME = 2;
 static final int START = 3;
 static final int AUTHORIZED = 4;
 private int state = START;

 String userName;
 String password;

 public void user(String userName) {
 switch (state) {
 case START:
 this.userName = userName;
 state = HAVE_USER_NAME;
 break;

 case HAVE_USER_NAME:
 case AUTHORIZED:
 endLastSessionWithoutUpdate();
 goToStartState()
 }
 }

 //...

Good Object-Oriented Design

Dr. Radu Marinescu

SPOP with Switches

89

public void pass(String password) {
 switch (state) {
 case START:
 giveWarningOfIllegalCommand();
 break;
 case HAVE_USER_NAME:
 this.password = password;
 if (validateUser())
 state = AUTHORIZED;
 else {
 sendErrorMessageOrWhatEver();
 userName = null;
 password = null;
 state = START;
 }
 break;
 case AUTHORIZED:
 endLastSessionWithoutUpdate();
 goToStartState()
 }
 }
 // ...

Good Object-Oriented Design

Dr. Radu Marinescu 90

State Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 91

Basic Aspects of State Pattern

! Intent

!allow an object to alter its behavior when its internal state changes
" object will appear to change its class

! Applicability

!object's behavior depends on its state

! it must change behavior at run-time depending on that state

!operations with multipart conditional statements depending on the
object's state

" state represented by one or more enumerated constants

" several operations with the same (or similar) conditional structure

Good Object-Oriented Design

Dr. Radu Marinescu 92

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 93

Participants

! Context

!defines the interface of interest for clients

!maintains an instance of ConcreteState subclass

! State

!defines an interface for encapsulating the behavior associated
with a particular state of the Context

! ConcreteState

!each subclass implements a behavior associated with a state of
the Context

Good Object-Oriented Design

Dr. Radu Marinescu 94

Collaborations

! Context delegates state-specific requests to the State objects

! the Context may pass itself to the State object
" if the State needs to access it in order to accomplish the request

! State transitions are managed either by Context or by State

!see discussion on the coming slides

! Clients interact exclusively with Context

!but they might configure contexts with states
" e.g initial state

Good Object-Oriented Design

Dr. Radu Marinescu 95

Consequences

! Localizes state-specific behavior and partitions behavior for

different states

!put all behavior associated with a state in a state-object

!easy to add new states and transitions
" context becomes O-C

!Behavior spread among several State subclasses
" number of classes increases, less compact than a single class

" good if many states...

! Makes state transitions explicit

!not only a change of an internal value

!states receive a full-object status!

!Protects Context from inconsistent internal states

Good Object-Oriented Design

Dr. Radu Marinescu 96

Applying State to SPOP

class SPop {

 private SPopState state = new Start();

 public void user(String userName) {

 state = state.user(userName);

 }

 public void pass(String password) {

 state = state.pass(password);

 }

 public void list(int messageNumber) {

 state = state.list(massageNumber);

 }

 // . . .

}

Good Object-Oriented Design

Dr. Radu Marinescu 97

SPOP States class SPopState {
 public SPopState user(String userName) {
 return goToStartState(); }
 public SPopState pass(String password) {
 return goToStartState(); }
 public SPopState list(int massageNumber) {
 return goToStartState(); }
 public SPopState retr(int massageNumber) {
 return goToStartState();
 }
 public SPopState quit() {
 return goToStartState(); }
 protected SPopState goToStartState() {
 endLastSessionWithoutUpdate();
 return new StartState();
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

SPOP States

98

class HaveUserName extends SPopState {
 String userName;

 public HaveUserName(String userName) {
 this.userName = userName;
 }

 public SPopState pass(String password) {
 if (validateUser(userName, password)
 return new Authorized(userName);
 else
 return goToStartState();
 }
}

class Start extends SPopState {
 public SPopState user(String uName)
 {
 return new HaveUserName(uName);
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu 99

How much State in the State?

! Let's identify the roles...

!SPop is the Context

!SPopState is the abstract State

!Start, HaveUserName are ConcreteStates

! All the state and real behavior is in SPopState and subclasses

! this is an extreme example

! In general Context has data and methods

!besides State & State methods

! this data will not change states

! Only some aspects of the Context will alter its behavior

Good Object-Oriented Design

Dr. Radu Marinescu 100

Who Defines the State transition?

! The Context if ...

! ...states will be reused in different state machines with different
transitions

! ... the criteria for changing states are fixed

!SPOP Example

! The States

!More flexible to let State subclasses specify the next state

!as we have seen before

class Spop {
 private SPopState state = new Start();

 public void user(String userName) {
 state.user(userName);
 state = new HaveUserName(userName);
 }

 public void pass(String password) {
 if (state.pass(password))
 state = new Authorized();
 else
 state = new Start();
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Transition Triggered by Context

101

class Spop {
 private SPopState state = new Start();

 public void user(String userName) {
 state = state.user(userName);
 }

 public void pass(String password) {
 state = state.pass(password);
 }

 public void list(int messageNumber) {
 state = state.list(messageNumber);
 }

 // . . .
}

Good Object-Oriented Design

Dr. Radu Marinescu

Transition Triggered by States

102

class Start extends SPopState {
 public SPopState user(String uName) {
 return new HaveUserName(uName);
 }
}

class HaveUserName extends SPopState {
 String userName;

 public HaveUserName(String userName) {
 this.userName = userName;
 }

 public SPopState pass(String password) {
 if (validateUser(userName, password)
 return new Authorized(userName);
 else return goToStartState();
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu 103

Sharing State Objects

! Multiple contexts can use the same state object

! if the state object has no instance variables

! State object has no instance variables if the object ...

! ... has no need for instance variables

! ... stores its instance variables elsewhere
" Variant 1 – Context stores them and passes them to states

" Variant 2 – Context stores them and State gets them

Good Object-Oriented Design

Dr. Radu Marinescu

Stateless State Objects Variant 1

104

class Spop {
 private SPopState state = new Start();

 String userName;
 String password;

 public void user(String newName) {
 this.userName = newName;
 state.user(newName);
 }

 public void pass(String password) {
 state.pass(userName , password);
 }

// . . .

class SPop {
 private SPopState state = new Start();

 String userName;
 String password;

 public String userName() { return userName; }
 public String password() { return password; }

 public void user(String newName) {
 this.userName = newName ;
 state.user(this);
 }
 // . . .

class HaveUserName extends SPopState {
 public SPopState pass(SPop mailServer) {
 String useName = mailServer.userName();
 etc.
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Stateless State Objects Variant 2

105

Good Object-Oriented Design

Dr. Radu Marinescu 106

State versus Strategy

! Rate of Change
!Strategy

" Context object usually contains one of several possible
ConcreteStrategy objects

!State
" Context object often changes its ConcreteState object over its

lifetime

! Visibility of Change
!Strategy

" All ConcreteStrategy do the same thing, but differently

" Clients do not see any difference in behavior in the Context

!State
" ConcreteState acts differently
" Clients see different behavior in the Context

Good Object-Oriented Design

Dr. Radu Marinescu 107

Proxy Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 108

Loading "Heavy" Objects

! Document Editor that can embed multimedia objects

!MM objects are expensive to create " opening of document slow

!avoid creating expensive objects
" they are not all necessary as they are not all visible at the same time

! Creating each expensive object on demand !

! i.e. when image has to be displayed

! What should we put instead?

!hide the fact that we are "lazy"!

!don't complicate the document editor!

Good Object-Oriented Design

Dr. Radu Marinescu 109

Idea: Use a Placeholder!

! create only when needed for drawing

! keeps information about the dimensions (extent)

Good Object-Oriented Design

Dr. Radu Marinescu 110

Basic Aspects

! Intent

!provide a surrogate or placeholder for another object to control
access to it

! Applicability: whenever there is a need for a more flexible or

sophisticated reference to an object than a simple pointer

! remote proxy … if real object is “far away”

!virtual proxy … if real object is “expensive”

!protection proxy … if real object is “vulnerable”

!enhancement proxies (smart pointers)
" prevent accidental delete of objects (counts references)

proxy (n. pl prox-ies) The agency for a person who acts as a

substitute for another person, authority to act for another

Good Object-Oriented Design

Dr. Radu Marinescu 111

Further Reasons to Use Proxies

! Virtual Proxy

!Creates/accesses expensive objects on demand
" may wish to delay creating an expensive object until it is really

accessed

! It may be too expensive to keep entire state of the object in
memory at one time

! Protection Proxy

!Provides different levels of access to original object

! Cache Proxy (Server Proxy)

!Multiple local clients can share results from expensive operations
" remote accesses or long computations

Good Object-Oriented Design

Dr. Radu Marinescu 112

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 113

Participants

! Proxy

!maintains a reference that lets the proxy access the real subject.

!provides an interface identical to Subject's
" so that proxy can be substituted for the real subject

!controls access to the real subject
" may be responsible for creating or deleting it

! Subject

!defines the common interface for RealSubject and Proxy

! RealSubject

!defines the real object that the proxy holds place for

Good Object-Oriented Design

Dr. Radu Marinescu 114

Collaborations

public class Table {
 public Object elementAt(int row, int column){ blah }
 public void setElementAt(Object element,int row,int col)
 { blah} }

public class RowLockTable {
 Table realTable;
 Integer[] locks;

 public RowLockTable(Table toLock) {
 realTable = toLock;
 locks = new String[toLock.numberOfRows()];
 for (int row = 0; row< toLock.numberOfRows(); row++)
 locks[row] = new Integer(row); }

 public Object elementAt(int row, int column) {
 synchronized (locks[row]) {
 return realTable.elementAt(row, column);
 } }
 public void setElementAt(Object element,int row,int col)
 {
 synchronized (locks[row]) {
 return realTable.setElementAt(element, row, col);
 }
 } }

Good Object-Oriented Design

Dr. Radu Marinescu 115

Synchronization Proxy
! Synchronize multiple accesses to real subject

Good Object-Oriented Design

Dr. Radu Marinescu 116

Consequences

! Proxies introduce a level of indirection

!used differently depending on the kind of proxy:
" hide different address space (remote p.)

" creation on demand (virtual p.)

" allow additional housekeeping activities (protection, smart pointers)

! Copy-On-Write [J.Coplien92 - The "Handle Class" Idiom]

!copying large and complicated objects is expensive

!use proxy to pay the price of copying only when the new object
is modified

!Subject must be reference counted
" proxy increments counter on copy

" when modified, do copy and decrement counter

" if (counter == 0) delete Subject

Good Object-Oriented Design

Dr. Radu Marinescu 117

Handle Class Idiom

! String contains a StringRep object

! StringRep holds the text and reference count

! String passes actual string operations to StringRep object

! String handles pointer operations and deleting StringRep object when
reference count reaches zero

class StringRep {
 friend String;

private:
 char *text;
 int refCount;

 StringRep() { *(text = new char[1]) = '\0'; }

 StringRep(const StringRep& s) {
 strcpy(text = new char[strlen(s.text) + 1], s.text); }

 StringRep(const char *s) {
 strcpy(text = new char[strlen(s) + 1], s); }

 ~StringRep() { delete[] text; }

 int length() const { return strlen(text); }

 void print() const { printf("%s\n", text); }
}

StringRep StringRep::operator+(const StringRep& s) const {
 // concatenate the two representations
}

Good Object-Oriented Design

Dr. Radu Marinescu 118

class String {
 friend StringRep;
private:
 StringRep *imp;
public:
 String() {
 imp = new StringRep();
 imp->refCount = 1; }
 String(const char* charStr) {
 imp = new StringRep(charStr);
 imp->refCount = 1;}

 String operator=(const String& q){
 imp->refCount--;
 if (imp->refCount <= 0
 && imp != q.imp) delete imp;
 imp = q.imp;
 imp->refCount++;
 return *this;
 }

 ~String() {
 imp->refCount--;
 if (imp->refCount <= 0)
 delete imp;
 }

Good Object-Oriented Design

Dr. Radu Marinescu 119

String operator+(const String& add) {
 imp = *imp + add.imp; // proxy behavior
 return *this;
 }
 //...
};

Good Object-Oriented Design

Dr. Radu Marinescu 120

Inheritance that Leads to Explosion!

Good Object-Oriented Design

Dr. Radu Marinescu 121

Inheritance that Leads to Explosion!

Good Object-Oriented Design

Dr. Radu Marinescu 122

Bridge Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 123

Basic Aspects of Bridge Pattern

! Intent

!decouple an abstraction from its implementation

!allow implementation to vary independently from its abstraction

!abstraction defines and implements the interface
" all operations in abstraction call methods from its implementation obj.

! In the Bridge pattern ...

! ... an abstraction can use different implementations

! ... an implementation can be used in different abstractions

Good Object-Oriented Design

Dr. Radu Marinescu 124

Applicability

! Avoid permanent binding btw. an abstraction and its

implementation

! Abstractions and their implementations should be

independently extensible by subclassing

! Hide the implementation of an abstraction completely from

clients

! their code should not have to be recompiled when impl.
changes

! Share an implementation among multiple objects

!and this fact should be hidden from the client

Good Object-Oriented Design

Dr. Radu Marinescu 125

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 126

Participants

! Abstraction

!defines the abstraction's interface

!maintains a reference to an object of type Implementor

! Implementor

!defines the interface for implementation classes
" does not necessarily correspond to the Abstraction's interface

" Implementor contains primitive operations,

" Abstraction defines the higher-level operations based on these

primitives

! RefinedAbstraction

!extends the interface defines by Abstraction

! ConcreteImplementer

! implements the Implementor interface, defining a concrete impl.

Good Object-Oriented Design

Dr. Radu Marinescu 127

Consequences

! Decoupling interface and implementation

! implem. configurable and changeable at run-time

! reduce compile-time dependencies
" implement. changes do not require Abstraction to recompile

! Improved extensibility

!extend by subclassing independently Abstractions and
Implementations

! Hiding implementation details from clients

!shield clients from implementations details
" e.g. sharing implementor objects together with reference counting

 BTW ... is the "Handle Class" a Bridge or a Proxy? ;)

Good Object-Oriented Design

Dr. Radu Marinescu 128

Implementation

! Only one Implementor

!not necessary to create an abstract implementor class

!degenerate, but useful due to decoupling

! Which Implementor should I use ?

!Variant 1: let Abstraction know all concrete implem. and choose

!Variant 2: choose initially default implem. and change later

!Variant 3: use an Abstract Factory
" no coupling btw. Abstraction and concrete implem. classes

!

Good Object-Oriented Design

Dr. Radu Marinescu 129

Windows Example Revisited

