
Good Object-Oriented Design

Dr. Radu Marinescu 1

Well-Mannered Dealing of Requests

Good Object-Oriented Design

Dr. Radu Marinescu 2

Command Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 3

Menu Items Use Commands

Good Object-Oriented Design

Dr. Radu Marinescu 4

Basic Aspects

! Intent

! Encapsulate requests as objects, letting you to:
" parameterize clients with different requests

" queue or log requests

" support undoable operations

! Applicability

! Parameterize objects
" replacement for callbacks

! Specify, queue, and execute requests at different times

! Support undo
" recover from crashes # needs undo operations in interface

! Support for logging changes
" recover from crashes # needs load/store operations in interface

! Model transactions
" structure systems around high-level operations built on primitive ones

" common interface ! invoke all transaction same way

Good Object-Oriented Design

Dr. Radu Marinescu 5

Structure

create

set

Holds command

Transforms: concreteReceiver.action() in command.execute()

Good Object-Oriented Design

Dr. Radu Marinescu 6

Participants

! Command

!declares the interface for executing the operation

! ConcreteCommand

!binds a request with a concrete action

! Invoker

!asks the command to carry out the request

! Receiver

!knows how to perform the operations associated with carrying
out a request.

! Client

!creates a ConcreteCommand and sets its receiver

Good Object-Oriented Design

Dr. Radu Marinescu 7

Collaborations

! Client " ConcreteCommand

!creates and specifies receiver

! Invoker " ConcreteCommand

! ConcreteCommand " Receiver

Good Object-Oriented Design

Dr. Radu Marinescu 8

Consequences

! Decouples Invoker from Receiver

! Commands are first-class objects

!can be manipulated and extended

! Composite Commands

!see also Composite pattern

! Easy to add new commands

! Invoker does not change

! it is Open-Closed

! Potential for an excessive number of command classes

Good Object-Oriented Design

Dr. Radu Marinescu 9

Example: Menu Callbacks

Good Object-Oriented Design

Dr. Radu Marinescu 10

Intelligence of Command objects

! "Dumb"

!delegate everything to Receiver

!used just to decouple Sender from Receiver

! "Genius"

!does everything itself without delegating at all

!useful if no receiver exists

! let ConcreteCommand be independent of further classes

! "Smart"

! find receiver dynamically

Good Object-Oriented Design

Dr. Radu Marinescu 11

Undoable Commands

! Need to store additional state to reverse execution

! receiver object

!parameters of the operation performed on receiver

!original values in receiver that may change due to request
" receiver must provide operations that makes possible for command

object to return it to its prior state

! History list

!sequence of commands that have been executed

" used as LIFO with reverse-execution ! undo

" used as FIFO with execution ! redo

!Commands may need to be copied
" when state of commands change by execution

Good Object-Oriented Design

Dr. Radu Marinescu 12

C++: Commands and Templates

! Avoids subclassing for every kind of action and receiver

! Usable for simple commands

!don't require arguments in receiver

!are not undoable

! See example

! Works only for simple commands!

! if action needs parameters or command must keep state use a
Command subclass!

Good Object-Oriented Design

Dr. Radu Marinescu 13

Composed Commands

Good Object-Oriented Design

Dr. Radu Marinescu 14

Composite Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 15

Motivation

! GUI Windows and GUI elements

!How does the window hold and deal with the different items it
has to manage?

!Widgets are different that WidgetContainers

Good Object-Oriented Design

Dr. Radu Marinescu 16

Implementation Ideas

! Nightmare Implementation

! for each operation deal with each category of objects individually

!no uniformity and no hiding of complexity

!a lot of code duplication

! Program to an Interface

!uniform dealing with widget operations

!but still containers are treated different

class Window {
 Buttons[] myButtons;
 Menus[] myMenus;
 TextAreas[] myTextAreas;
 WidgetContainer[] myContainers;

 public void update() {
 if (myButtons != null)
 for (int k = 0; k < myButtons.length(); k++)
 myButtons[k].refresh();
 if (myMenus != null)
 for (int k = 0; k < myMenus.length(); k++)
 myMenus[k].display();
 if (myTextAreas != null)
 for (int k = 0; k < myButtons.length(); k++)
 myTextAreas[k].refresh();
 if (myContainers != null)
 for (int k = 0; k < myContainers.length();k++)
 myContainers[k].updateElements();
 // ...etc. }

Good Object-Oriented Design

Dr. Radu Marinescu

Nightmare Implementation

17

class Window {
 GUIWidgets[] myWidgets;
 WidgetContainer[] myContainers;

 public void update() {
 if(myWidgets != null)
 for (int k = 0; k < myWidgets.length(); k++)
 myWidgets[k].update();
 if(myContainers != null)
 for (int k = 0; k < myContainers.length(); k++)
 myContainers[k].updateElements();
 // etc.
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

“Program to an Interface”

18

Good Object-Oriented Design

Dr. Radu Marinescu 19

Basic Aspects of Composite Pattern

! Intent
!Treat individual objects and compositions of these object

uniformly
!Compose objects into tree-structures to represent recursive

aggregations

! Applicability
! represent part-whole hierarchies of objects

!be able to ignore the difference between compositions of objects
and individual objects

Good Object-Oriented Design

Dr. Radu Marinescu 20

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 21

Participants & Collaborations

! Component

!declares interface for objects in the composition

! implements default behavior for components when possible

! Composite

!defines behavior for components having children

!stores child components
" implement child-specific operations

! Leaf

!defines behavior for primitive objects in the composition

! Client

!manipulates objects in the composition through the Component

Good Object-Oriented Design

Dr. Radu Marinescu 22

Consequences

! Defines uniform class hierarchies
! recursive composition of objects

! Make clients simple
! don't know whether dealing with a leaf or a composite

! simplifies code because it avoids to deal in a different manner with each
class

! Easier to extend
! easy to add new Composite or Leave classes

! glorious application of Open-Closed Principle ;)

! Design excessively general
! type checks needed to restrict the types admitted in a particular

composite structure

Good Object-Oriented Design

Dr. Radu Marinescu 23

Applying Composite to Widget Problem

! See code

!Component implements default behavior when possible
" Button, Menu, etc override Component methods when needed

!WidgetContainer will have to override all widget operations

class WidgetContainer {
 Component[] myComponents;

 public void update() {
 if (myComponents != null)
 for(int k = 0; k < myComponents.length(); k++)
 myComponents[k].update();
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Composite for Widgets...

24

Good Object-Oriented Design

Dr. Radu Marinescu 25

Where to Place Container Operations ?

! adding, deleting, managing components in composite

! should they be placed in Component or in Composite?

! Pro-Transparency Approach

!Declaring them in the Component gives all subclasses the same
interface

" All subclasses can be treated alike.

! costs safety
" clients may do stupid things like adding objects to leaves

" getComposite() to improve safety.

! Pro-Safety Approach

!Declaring them in Composite is safer
" Adding or removing widgets to non-WidgetContainers is an error

class Component {
 public Composite GetComposite() { return 0; }
 //...
}

class Composite extends Component {
 public void Add(Component);
 // ...
 public Composite GetComposite() { return this; }
}

class Leaf extends Component { /* ... */ }

Composite aComposite = new Composite();
Leaf aLeaf = new Leaf();
Component aComponent; Composite test;

aComponent = aComposite; test = aComponent->GetComposite();
if (test != null) { test->Add(new Leaf); }

aComponent = aLeaf; test = aComponent->GetComposite();
if (test != null) { test->Add(new Leaf); } // no add !

Good Object-Oriented Design

Dr. Radu Marinescu

GetComposite Solution

26

Good Object-Oriented Design

Dr. Radu Marinescu 27

Other Implementation Issues

! Explicit parent references

!simplifies traversal

!place it in Component

! the consistency issue
" change parent reference only when add or remove child

! Child Ordering

!consider using Iterator

! Who should delete components?

!Composite should delete its children

! Caching to improve performance

!cache information about children in parents

Good Object-Oriented Design

Dr. Radu Marinescu 28

Chain of Responsibility Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 29

Basic Aspects

! Intent

!Decouple sender of request from its receiver
" by giving more than one object a chance to handle the request

!Put receivers in a chain and pass the request along the chain
" until an object handles it

! Motivation

!context-sensitive help
" a help request is handled by one of several UI objects

!Which one?
" depends on the context

!The object that initiates the request does not know the object
that will eventually provide the help

Good Object-Oriented Design

Dr. Radu Marinescu 30

When to Use?

! Applicability

!more than one object many handle a request
" and handler isn't known a priori

!set of objects that can handle the request should be dynamically
specifiable

!send a request to several objects without specifying the receiver

Good Object-Oriented Design

Dr. Radu Marinescu 31

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 32

Participants & Collaborations

! Handler

!defines the interface for handling requests

!may implement the successor link

! ConcreteHandler

!either handles the request it is responsible for ...
" if possible

! ... or otherwise it forwards the request to its successor

! Client

! initiates the request to a ConcreteHandler object in the chain

Good Object-Oriented Design

Dr. Radu Marinescu 33

The Context-Help System

Good Object-Oriented Design

Dr. Radu Marinescu 34

Consequences

! Reduced Coupling
! frees the client (sender) from knowing who will handle its request
!sender and receiver don't know each other

! instead of sender knowing all potential receivers, just keep a single
reference to next handler in chain.

" simplify object interconnections

! Flexibility in assigning responsibilities to objects
! responsibilities can be added or changed
!chain can be modified at run-time

! Requests can go unhandled
!chain may be configured improperly

Good Object-Oriented Design

Dr. Radu Marinescu 35

How to Design Chains of Commands?

! Like the military

!a request is made

! it goes up the chain of command until someone has the authority
to answer the request

Good Object-Oriented Design

Dr. Radu Marinescu 36

Implementing the Successor Chain

! Define new link

!Give each handler a link to its successor

! Use existing links

!concrete handlers may already have pointers to their successors
" so just use them!

!parent references in a part-whole hierarchy
" can define a part's successor

!spares work and space ...

! ... but it must reflect the chain of responsibilities that is needed

Good Object-Oriented Design

Dr. Radu Marinescu 37

Connecting Successors

... if there are no pre-existing references for building the chain

! Successor link usually managed by Handler

! default implementation
" just forwards request to successor

" frees uninterested ConcreteHandler's to implement request handling

! Sample Implementation (C++)
 class HelpHandler {

 public:

 HelpHandler(HelpHandler* s) : successor(s) { }

 virtual void HandleHelp();

 private: HelpHandler* _successor;

 };

 void HelpHandler::HandleHelp () {

 if (_successor) _successor->HandleHelp();

 }

Good Object-Oriented Design

Dr. Radu Marinescu 38

Representing Multiple Requests using One Chain

! Each request is hard-coded

!convenient and safe

!not flexible
" limited to the fixed set of requests defined by handler

! Unique handler with parameters

!more flexible

!but it requires conditional statements for dispatching request

! less type-safe to pass parameters

! Unique handler with Request object parameter

!subclasses extend rather than overwrite the handler method

abstract class HardCodedHandler {
 private HardCodedHandler successor;

 public HardCodedHandler(HardCodedHandler aSuccessor)
 { successor = aSuccessor; }

 public void handleOpen()
 { successor.handleOpen(); }

 public void handleClose()
 { successor.handleClose(); }

 public void handleNew(String fileName)
 { successor.handleNew(fileName); }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Multiple Requests - Solution 1: Hard-Coded

39

abstract class SingleHandler {
 private SingleHandler successor;

 public SingleHandler(SingleHandler aSuccessor) {
 successor = aSuccessor;
 }

 public void handle(String request) {
 successor.handle(request);
 }
}

class ConcreteOpenHandler extends SingleHandler {
 public void handle(String request) {
 switch (request) {
 case "Open" : // do the right thing;
 case "Close" : // more right things;
 case "New" : // even more right things;
 default: successor.handle(request);
 }
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Multiple Requests - Solution 2: Unique Parameterized Handle

40

void Handler::HandleRequest (Request* theRequest) {
 switch (theRequest->GetKind()) {
 case Open: HandleOpen((OpenRequest*) theRequest); break;
 case New: HandleNew((NewRequest*) theRequest);
 /* ... */ break;
 default: /* ... */ break;
 } }

class ExtendedHandler : public Handler {
 public: virtual void HandleRequest(Request* theRequest);
 // ... };

void ExtendedHandler::HandleRequest(Request* r) {
 switch (r ->GetKind()) {
 case Preview:
 // handle the Preview request
 break;

 default:
 // let Handler handle other requests
 Handler::HandleRequest(r);
 } }

Good Object-Oriented Design

Dr. Radu Marinescu

Multiple Requests - Solution 3: Request Object

41

Good Object-Oriented Design

Dr. Radu Marinescu 42

Let’s Play with Smart Phones...

SmartPhone

makeCall()
manageCalendar()

<<interface>>

+makeCall()
+manageCalendar()

Communicator

- myNumber : long
+makeCall()
+manageCalendar()

IPhone

- myLogo : String

Good Object-Oriented Design

Dr. Radu Marinescu

Smart Phones. The Challenge... :)

! clients may want to add new

features to these classes, but

we are allowed to add just one

method to the hierarchy...

! What should we do? :)

43

SmartPhone
makeCall()
manageCalendar()
additionalFeature(Feature feat)

<<interface>>

+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

Communicator

- myNumber : long
+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

IPhone

- myLogo : String

{
 feat.executeFeature(this)
}

{
 feat.executeFeature(this)
}

Feature
executeFeature(Communicator)
executeFeature(IPhone)

<<interface>>

+executeFeature(Communicator)
+executeFeature(IPhone)

TakePictureFeature

- myNumber : long

Good Object-Oriented Design

Dr. Radu Marinescu

First Solution

44

Good Object-Oriented Design

Dr. Radu Marinescu

Implementation Options

! Is one executeFeature() method enough?

!we need TWO “containers” for the two distinct implementations
" one method per type of phone

!one method with a switch... phew! :(

! Factor out additionalFeature(Feature) in SmartPhone?

! transform SmartPhone in abstract class (from an interface)

! transform Feature in abstract class

!define executeFeature(SmartPhone)as a Template Method

" protected hooks being executeFeature(IPhone) and
executeFeature(Communicator)

!switch stays in one place...
" independently on the number of new features

45

Good Object-Oriented Design

Dr. Radu Marinescu

Double Dispatch

! Actually what we have is a bi-dimensional matrix of features:

46

Features

Smart
Phones

Take

Pictures

Video

Call

....

IPhone
X X

Communicator
X X

....

! Actually what we have is a bi-dimensional matrix of features:

Good Object-Oriented Design

Dr. Radu Marinescu

The Matrix Reveals a Problem...

! It is easy add a new Feature, but hard to add a new
SmartPhone

!We have to change the entire Feature hierarchy!!

! ...and even if we change who says that all SmartPhone will

have all the additional features?!!

! In other words:

WHAT IF THE MATRIX IS SPARSE?

47

Good Object-Oriented Design

Dr. Radu Marinescu

The True Problem: Cyclic Dependencies

48

SmartPhone
makeCall()
manageCalendar()
additionalFeature(Feature feat)

<<interface>>

+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

Communicator

- myNumber : long
+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

IPhone

- myLogo : String

{
 feat.executeFeature(this)
}

{
 feat.executeFeature(this)
}

Feature
executeFeature(Communicator)
executeFeature(IPhone)

<<interface>>

+executeFeature(Communicator)
+executeFeature(IPhone)

TakePictureFeature

- myNumber : long

SmartPhone
makeCall()
manageCalendar()
additionalFeature(Feature feat)

<<interface>>

+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

Communicator

- myNumber : long
+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

IPhone

- myLogo : String

{
 if(feats instanceof IPhoneFeature)
 ((IPhoneFeature)feat).executeFeature(this);
}

Feature
<<interface>>

{
 if(feats instanceof CommunicatorFeature)
 ((CommunicatorFeature)feat).executeFeature(this);
}

IPhoneFeature
executeFeature(IPhone)

<<interface>>

CommunicatorFeature
executeFeature(Communicator)

<<interface>>

+executeFeature(Communicator)
VideoCallFeature

+executeFeature(Communicator)
+executeFeature(IPhone)

TakePictureFeature

Good Object-Oriented Design

Dr. Radu Marinescu

Second Solution: Remove Cycles

49

Good Object-Oriented Design

Dr. Radu Marinescu 50

Visitor

Good Object-Oriented Design

Dr. Radu Marinescu

Visitor

! allows new methods to be added to existing hierarchies

without modifying the interface of those hierarchies

! Each derivative (i.e. concrete class) of the visited hierarchy has

a method in the Visitor hierarchy

! Used for double dispatch:

! i.e. a double polymorphic dispatch

! Typical Usage: generate various reports by walking through

large data structures

51

Good Object-Oriented Design

Dr. Radu Marinescu

You want to use it when...

! Many distinct and unrelated operations need to be performed

on objects in an object structure and you don’t want to

“pollute” their classes with these operations.

! The classes defining the object structure rarely change, but

you often want to define new operations over the structure

52

Good Object-Oriented Design

Dr. Radu Marinescu

Structure

53

Good Object-Oriented Design

Dr. Radu Marinescu

Collaborations

54

Good Object-Oriented Design

Dr. Radu Marinescu

Double Dispatch

! It means that operations get executed depending on the kind

of request and types of two receivers, NOT one.

! some programming languages support this directly

!e.g. Lisp

! Not all programming languages support it directly

! like Java, C#, C++

55

Good Object-Oriented Design

Dr. Radu Marinescu

Object Traversal

! Responsibility can fall on:

1. the structure

2.the visitor

3.a separate iterator

! Most common is to use the structure itself, but an iterator is

used just as effectively.

! The visitor is used least often to do it, because traversal code

often gets duplicated.

56

Good Object-Oriented Design

Dr. Radu Marinescu

Consequences

! Adding new operations is easy!

! Gathers related operations and separates unrelated ones

!hmmm.... this is not necessarily a positive aspect!

!simplifying classes defining elements and algorithms defined by
visitors.

! Adding new ConcreteElement classes is hard.

! Forces you to provide public operations that access an

element’s internal state, which may compromise encapsulation

57

Good Object-Oriented Design

Dr. Radu Marinescu

Issue of Cyclic Dependencies

! Bidirectional Dependency

!Visited hierarchy depends on the base class of the visitor hierarchy

!base class of the visitor hierarchy depends on each derivative of the
visited hierarchy

! Cycle of dependencies ties all visited derivatives together

!difficult to compile incrementally

!difficult to add new derivatives of the visited hierarchy

58

Good Object-Oriented Design

Dr. Radu Marinescu

Acyclic Visitor

! used for a volatile hierarchy

!new derivatives

!quick compilation time is needed

! Acyclic Visitor breaks the dependency cycle by making the

visitor base class degenerate

! i.e. with no methods

! Acyclic Visitor is like a sparse matrix!

59

Good Object-Oriented Design

Dr. Radu Marinescu

Acyclic Visitor on Example

60

SmartPhone
makeCall()
manageCalendar()
additionalFeature(Feature feat)

<<interface>>

+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

Communicator

- myNumber : long
+makeCall()
+manageCalendar()
+additionalFeature(Feature feat)

IPhone

- myLogo : String

{
 if(feats instanceof IPhoneFeature)
 ((IPhoneFeature)feat).executeFeature(this);
}

Feature
<<interface>>

{
 if(feats instanceof CommunicatorFeature)
 ((CommunicatorFeature)feat).executeFeature(this);
}

IPhoneFeature
executeFeature(IPhone)

<<interface>>

CommunicatorFeature
executeFeature(Communicator)

<<interface>>

+executeFeature(Communicator)
VideoCallFeature

+executeFeature(Communicator)
+executeFeature(IPhone)

TakePictureFeature

Good Object-Oriented Design

Dr. Radu Marinescu 61

A Class Inflation Problem...

Good Object-Oriented Design

Dr. Radu Marinescu 62

Motivation

! A TextView has 2 features:

!borders:
" 3 options: none, flat, 3D

!scroll-bars:
" 4 options: none, side, bottom, both

! How many Classes?

!3 x 4 = 12 !!!

" e.g. TextView, TextViewWithNoBorder&SideScrollbar,

TextViewWithNoBorder&BottomScrollbar,

TextViewWithNoBorder&Bottom&SideScrollbar,

TextViewWith3DBorder, TextViewWith3DBorder&SideScrollbar,

TextViewWith3DBorder&BottomScrollbar,

TextViewWith3DBorder&Bottom&SideScrollbar,

Good Object-Oriented Design

Dr. Radu Marinescu 63

Solution 1: Use Object Composition

! Is it Open-Closed?

class TextView {
 Border myBorder;
 ScrollBar verticalBar;
 ScrollBar horizontalBar;

 public void draw() {
 myBorder.draw();
 verticalBar.draw();
 horizontalBar.draw();
 // code to draw self . . .
 }
 // etc.
}

Good Object-Oriented Design

Dr. Radu Marinescu

Solution 1: The Source-Code

64

Good Object-Oriented Design

Dr. Radu Marinescu 65

Solution 2: Change the Skin, not the Guts!

! TextView has no borders or scrollbars!

! Add borders and scrollbars on top of a TextView

Good Object-Oriented Design

Dr. Radu Marinescu 66

Decorator Pattern

Changing the skin of an object

Good Object-Oriented Design

Dr. Radu Marinescu 67

Basic Aspects

! Intent

!Add responsibilities to a particular object rather than its class
" Attach additional responsibilities to an object dynamically.

!Provide a flexible alternative to subclassing

! Also Known As

!Wrapper

! Applicability

!Add responsibilities to objects transparently and dynamically
" i.e. without affecting other objects

!Extension by subclassing is impractical
" may lead to too many subclasses

Good Object-Oriented Design

Dr. Radu Marinescu 68

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 69

Participants & Collaborations

! Component

!defines the interface for objects that can have responsibilities added
dynamically

! ConcreteComponent

! the "bases" object to which additional responsibilities can be added

! Decorator

!defines an interface conformant to Component's interface
" for transparency

!maintains a reference to a Component object

! ConcreteDecorator

!adds responsibilities to the component

Good Object-Oriented Design

Dr. Radu Marinescu 70

Consequences

! More flexibility than static inheritance

!allows to mix and match responsibilities

!allows to apply a property twice

! Avoid feature-laden classes high-up in the hierarchy

! "pay-as-you-go" approach

!easy to define new types of decorations

! Lots of little objects

!easy to customize, but hard to learn and debug

! A decorator and its component aren't identical

!checking object identification can cause problems

" e.g. if (aComponent instanceof TextView) blah

Good Object-Oriented Design

Dr. Radu Marinescu 71

Implementation Issues

! Keep Decorators lightweight

!Don't put data members in VisualComponent

!use it for shaping the interface

! Omitting the abstract Decorator class

! if only one decoration is needed

!subclasses may pay for what they don't need

Good Object-Oriented Design

Dr. Radu Marinescu 72

Decorator Example from Java API

import java.io.*;

class ReadingFileExample {
 public static void main(String args[])
 throws Exception {
 FileInputStream inputFile;
 BufferedInputStream bufferedFile;
 ASCIIInputStream cin;

 inputFile = new FileInputStream("ReadFileEx.java");
 bufferedFile = new BufferedInputStream(inputFile);
 cin = new ASCIIInputStream(bufferedFile);

 System.out.println(cin.readWord());
 for (int k = 0 ; k < 4; k++)
 System.out.println(cin.readLine());
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Source Code for Java API Example

73

Good Object-Oriented Design

Dr. Radu Marinescu 74

Decorator vs. Chain of Responsibility

Chain of Responsibility Decorator

Comparable to “event-oriented”
architecture

Comparable to layered architecture
(layers of an onion)

The "filter" objects are of equal rank A "core" object is assumed, all "layer"
objects are optional

User views the chain as a "launch and
leave" pipeline

User views the decorated object as an
enhanced object

A request is routinely forwarded until a
single filter object handles it.
many (or all) filter objects could contrib.
to each request's handling.

A layer object always performs pre or
post processing as the request is
delegated.

All the handlers are peers (like nodes
in a linked list) – "end of list" condition
handling is required.

All the layer objects ultimately delegate
to a single core object - "end of list"
condition handling is not required.

