Good Object-Oriented Design

Well-Mannered Dealing of Requests

Dr. Radu Marinescu

Good Object-Oriented Design

Command Pattern

Dr. Radu Marinescu

Good Object-Oriented Design

Menu Items Use Commands

Application Ko ——m=4 Menu [K>——=8 Menultem [>——m Command
command
Add(Document) Add{Menultem) Clicked() @ Execute()
’ s A
Document command->Execute() -] T
1
Open(}
Close()
Cut()
Copy()
Paste()

Good Object-Oriented Design

Dr. Radu Marinescu

Basic Aspects

= Intent
» Encapsulate requests as objects, letting you to:
* parameterize clients with different requests
¢ queue or log requests
* support undoable operations
= Applicability
» Parameterize objects
* replacement for callbacks
» Specify, queue, and execute requests at different times
» Support undo
* recover from crashes - needs undo operations in interface
» Support for logging changes
* recover from crashes - needs load/store operations in interface
» Model transactions
* structure systems around high-level operations built on primitive ones
+ common interface = invoke all transaction same way

Dr. Radu Marinescu

Good Object-Oriented Design

Structure

Holds command

‘ Client ‘ | Invoker)o—- Command

Execute(}

set P 2%

receiver C

Action()

Execute() O----

=== '{ receiver-=Action();

state
create

Transforms: concreteReceiver.action() in command.execute()

Good Object-Oriented Design

Participants

Command

» declares the interface for executing the operation
ConcreteCommand

» binds a request with a concrete action

Invoker
» asks the command to carry out the request
Receiver

» knows how to perform the operations associated with carrying
out a request.

Client
» creates a ConcreteCommand and sets its receiver

Dr. Radu Marinescu

Dr. Radu Marinescu

Good Object-Oriented Design

Collaborations
aReceiver aClient aCommand aninvoker
naw Command(aReceiver) i

StoraCommand{aCommand)

Action()

—_—

= (Client — ConcreteCommand

» creates and specifies receiver
= Invoker — ConcreteCommand
= ConcreteCommand — Receiver

An entapsulated request

Good Object-Oriented Design

Dr. Radu Marinescu

Consequences

Decouples Invoker from Receiver

Commands are first-class objects
» can be manipulated and extended

Composite Commands
» see also Composite pattern

Easy to add new commands
» Invoker does not change

» it is Open-Closed

Potential for an excessive number of command classes

Dr. Radu Marinescu

Good Object-Oriented Design

Good Object-Oriented Design

Example: Menu Callbacks

Command

Execute()

Application E
OpenC
Add(Document) application i
Execute() 9@
AskUser() |
1
1

name = AskUser()

doc = new Document(name)
application->Add{doc)
doc->0pen()

Intelligence of Command objects

= "Dumb"
» delegate everything to Receiver
» used just to decouple Sender from Receiver

= "Genius"
» does everything itself without delegating at all
» useful if no receiver exists
» let ConcreteCommand be independent of further classes

= "Smart"
» find receiver dynamically

Dr. Radu Marinescu 9

Dr. Radu Marinescu

10

Good Object-Oriented Design

Good Object-Oriented Design

Undoable Commands

= Need to store additional state to reverse execution
» receiver object
» parameters of the operation performed on receiver
» original values in receiver that may change due to request

* receiver must provide operations that makes possible for command
object to return it to its prior state

= History list
» sequence of commands that have been executed
¢ used as LIFO with reverse-execution = undo
used as FIFO with execution = redo
» Commands may need to be copied
+ when state of commands change by execution

Dr. Radu Marinescu 11

C++: Commands and Templates

= Avoids subclassing for every kind of action and receiver

= Usable for simple commands
» don't require arguments in receiver
» are not undoable

= See example

= Works only for simple commands!

» if action needs parameters or command must keep state use a
Command subclass!

Dr. Radu Marinescu

12

Good Object-Oriented Design

Composed Commands

Command

Execute()

A

' |

|

! commands
MacroC >

Execute() ¢

:
for all ¢ in commands T
c->Execute()

Dr. Radu Marinescu

13

Good Object-Oriented Design

Composite Pattern

Dr. Radu Marinescu 14

Good Object-Oriented Design

Motivation

Application Window

Windows &

D O WidgetContainers
o O C) N

Text Areas

00 ||lco O et

= GUI Windows and GUI elements
» How does the window hold and deal with the different items it
has to manage?
» Widgets are different that WidgetContainers

Dr. Radu Marinescu

15

Good Object-Oriented Design

Implementation Ideas

= Nightmare Implementation
» for each operation deal with each category of objects individually

» no uniformity and no hiding of complexity
» a lot of code duplication
= Program to an Interface
» uniform dealing with widget operations
» but still containers are treated different

GUIWidget WidgetContainer
WidgetOperations() ContainerOperations

IButton| |Menu l [TextArea |

Dr. Radu Marinescu 16

Good Object-Oriented Design

Nightmare Implementation

class Window {
Buttons[] myButtons;
Menus[] myMenus;
TextAreas[] myTextAreas;
WidgetContainer[] myContainers;

public void update() {
if (myButtons != null)
for (int k = 0; k < myButtons.length(); k++)
myButtons[k] .refresh() ;
if (myMenus '= null)
for (int k = 0; k < myMenus.length(); k++)
myMenus [k] .display () ;
if (myTextAreas !'= null)
for (int k = 0; k < myButtons.length(); k++)
myTextAreas[k] .refresh() ;
if (myContainers != null)
for (int k = 0; k < myContainers.length() ;k++)
myContainers[k] .updateElements () ;

// ...etc. }

Dr. Radu Marinescu 17

Good Object-Oriented Design

“Program to an Interface”

class Window {
GUIWidgets[] myWidgets;
WidgetContainer[] myContainers;

public void update() {
if (myWidgets != null)
for (int k = 0; k < myWidgets.length();, k++)
myWidgets[k] .update() ;
if (myContainers != null)
for (int k = 0; k < myContainers.length(); k++)
myContainers[k] .updateElements () ;
// etc.

Dr. Radu Marinescu 18

Good Object-Oriented Design

Basic Aspects of Composite Pattern

= Intent

» Treat individual objects and compositions of these object
uniformly

» Compose objects into tree-structures to represent recursive
aggregations

= Applicability
» represent part-whole hierarchies of objects

» be able to ignore the difference between compositions of objects
and individual objects

Dr. Radu Marinescu 19

Good Object-Oriented Design

Structure

aComposite

aComposite

Client | C -

Operation(}
Add(Component)
Remove{Component)
GetChild(int)

/—A—V

Leaf Composite

- p forall g in children =
Operation() Operation{) ©---=--fF-====-==== 9.Operation();
Add{Component)

Remove(Component)
GetChild(int)

children

Dr. Radu Marinescu 20

Good Object-Oriented Design Good Object-Oriented Design

Participants & Collaborations Consequences
= Component = Defines uniform class hierarchies
» declares interface for objects in the composition » recursive composition of objects

» implements default behavior for components when possible
= Make clients simple
» don't know whether dealing with a leaf or a composite

. .
Comp95|te . . . » simplifies code because it avoids to deal in a different manner with each
» defines behavior for components having children class
» stores child components
* implement child-specific operations = Easier to extend
= | eaf » easy to add new Composite or Leave classes

. . L . . . » glorious application of Open-Closed Principle ;
» defines behavior for primitive objects in the composition d PP P ple7)

= Design excessively general

= Client > type cht_ecks needed to restrict the types admitted in a particular
» manipulates objects in the composition through the Component composite structure
Dr. Radu Marinescu 21 Dr. Radu Marinescu 22
Good Object-Oriented Design Good Object-Oriented Design
Applying Composite to Widget Problem Composite for Widgets...
class WidgetContainer {
Component Component[] myComponents;
WidgetOperations()

public void update() {

if (myComponents != null)
[Button] [Menu | [TextArea | [WidgotContainer for(int k = 0; k < myComponents.length(); k++)
myComponents [k] .update () ;

ContainerOperations

= See code

» Component implements default behavior when possible
* Button, Menu, etc override Component methods when needed

» WidgetContainer will have to override all widget operations

Dr. Radu Marinescu 23 Dr. Radu Marinescu 24

Good Object-Oriented Design

Where to Place Container Operations ?

= adding, deleting, managing components in composite
» should they be placed in Component or in Composite?

= Pro-Transparency Approach
» Declaring them in the Component gives all subclasses the same
interface
¢ All subclasses can be treated alike.
» costs safety
¢ clients may do stupid things like adding objects to leaves
¢ getComposite() to improve safety.
= Pro-Safety Approach
» Declaring them in Composite is safer
¢ Adding or removing widgets to non-WidgetContainers is an error

Good Object-Oriented Design

GetComposite Solution

class Component {
public Composite GetComposite() { return 0; }
//...

}

class Composite extends Component {

public void Add(Component) ;

/] ...

public Composite GetComposite() { return this; }
}

class Leaf extends Component { /* ... */ }
Composite aComposite = new Composite();
Leaf alLeaf = new Leaf();

Component aComponent; Composite test;

aComponent = aComposite; test = aComponent->GetComposite () ;
if (test !'= null) { test->Add(new Leaf); }

aComponent = aLeaf; test = aComponent->GetComposite() ;
if (test '= null) { test->Add(new Leaf); } // no add !

Dr. Radu Marinescu 25

Dr. Radu Marinescu

26

Good Object-Oriented Design

Other Implementation Issues

Explicit parent references
» simplifies traversal
» place it in Component
» the consistency issue
* change parent reference only when add or remove child

Child Ordering
» consider using Iterator
Who should delete components?
» Composite should delete its children

Caching to improve performance
» cache information about children in parents

Good Object-Oriented Design

Dr. Radu Marinescu 27

Chain of Responsibility Pattern

Dr. Radu Marinescu

28

Good Object-Oriented Design

Basic Aspects

= Intent
» Decouple sender of request from its receiver
¢ by giving more than one object a chance to handle the request
» Put receivers in a chain and pass the request along the chain
¢ until an object handles it

= Motivation
» context-sensitive help
* a help request is handled by one of several UI objects
» Which one?
¢ depends on the context

» The object that initiates the request does not know the object
that will eventually provide the help

Good Object-Oriented Design

When to Use?

= Applicability
» more than one object many handle a request
¢ and handler isn't known a priori

» set of objects that can handle the request should be dynamically
specifiable

» send a request to several objects without specifying the receiver

Dr. Radu Marinescu 29

Dr. Radu Marinescu 30

Good Object-Oriented Design

Structure

successor

HandleRequest(}
ConcreteHandler1 ConcreteHandler2
HandleRequest() HandleRequest()

aClient
f aConcreteHandler]
aHandler @ | lf aConcreteHandler]
successor -
successor

Good Object-Oriented Design

Dr. Radu Marinescu 31

Participants & Collaborations

= Handler
» defines the interface for handling requests
» may implement the successor link

= ConcreteHandler
» either handles the request it is responsible for ...
¢ if possible
» ... or otherwise it forwards the request to its successor

= Client
» initiates the request to a ConcreteHandler object in the chain

Dr. Radu Marinescu 32

Good Object-Oriented Design

The Context-Help System

handler

I: HelpHandler
HandleHelp(} o ----- | hann|er->}~1andler-1e|p(H
pr—
[|

Good Object-Oriented Design

. if can handle { B
| Dialog | Button ShowHelp()
} else
HandleHelp{) O-[---- Handler::HandleHelp()
ShowHelp() }
Dr. Radu Marinescu 33

Consequences

= Reduced Coupling
» frees the client (sender) from knowing who will handle its request
» sender and receiver don't know each other

» instead of sender knowing all potential receivers, just keep a single
reference to next handler in chain.

* simplify object interconnections

= Flexibility in assigning responsibilities to objects
» responsibilities can be added or changed
» chain can be modified at run-time

= Requests can go unhandled
» chain may be configured improperly

Dr. Radu Marinescu 34

Good Object-Oriented Design

How to Design Chains of Commands?

= Like the military
» a request is made

» it goes up the chain of command until someone has the authority
to answer the request

Very
General

General General

TN

Specific Specific Specific Specific

Very \ery Very Very Very Very

Specific Specific Specific opecific Specific Specific

Good Object-Oriented Design

Dr. Radu Marinescu 35

Implementing the Successor Chain

= Define new link
» Give each handler a link to its successor

= Use existing links
» concrete handlers may already have pointers to their successors
¢ 50 just use them!
» parent references in a part-whole hierarchy
* can define a part's successor
» spares work and space ...
» ... but it must reflect the chain of responsibilities that is needed

Dr. Radu Marinescu 36

Good Object-Oriented Design

Connecting Successors

. if there are no pre-existing references for building the chain

= Successor link usually managed by Handler
» default implementation
¢ just forwards request to successor
¢ frees uninterested ConcreteHandler's to implement request handling
= Sample Implementation (C++)
class HelpHandler {
public:
HelpHandler (HelpHandler* s) : successor(s) { }
virtual void HandleHelp() ;
private: HelpHandler* _successor;
}i
void HelpHandler: :HandleHelp () {

if (_successor) _successor->HandleHelp() ;

Dr. Radu Marinescu 37

Good Object-Oriented Design

Representing Multiple Requests using One Chain

= Each request is hard-coded
» convenient and safe
» not flexible

¢ limited to the fixed set of requests defined by handler

= Unique handler with parameters
» more flexible

» but it requires conditional statements for dispatching request
» less type-safe to pass parameters

= Unique handler with Request object parameter
» subclasses extend rather than overwrite the handler method

Dr. Radu Marinescu 38

Good Object-Oriented Design

Multiple Requests - Solution 1: Hard-Coded

abstract class HardCodedHandler {
private HardCodedHandler successor;

public HardCodedHandler (HardCodedHandler aSuccessor)
{ successor = aSuccessor; }

public void handleOpen ()
{ successor.handleOpen(); }

public void handleClose ()
{ successor.handleClose(); }

public void handleNew(String fileName)
{ successor.handleNew(fileName); }

Dr. Radu Marinescu 39

Good Object-Oriented Design

Multiple Requests - Solution 2: Unique Parameterized Handle
abstract class SingleHandler {

private SingleHandler successor;

public SingleHandler(SingleHandler aSuccessor) {
successor = aSuccessor;

}

public void handle(String request) {
successor.handle(request);
}
}

class ConcreteOpenHandler extends SingleHandler {
public void handle(String request) {
switch (request) {
case "Open" : // do the right thing;
case "Close" : // more right things;
case "New" : // even more right things;
default: successor.handle(request);

Dr. Radu Marinescu 40

Good Object-Oriented Design

Multiple Requests - Solution 3: Request Object

void Handler::HandleRequest (Request* theRequest) {
switch (theRequest->GetKind()) {
case Open: HandleOpen ((OpenRequest*) theRequest); break;
case New: HandleNew ((NewRequest*) theRequest);
/* ... */ break;
default: /* ... */ break;
1}

class ExtendedHandler : public Handler {

public: virtual void HandleRequest (Request* theRequest) ;
/1 ...0);

void ExtendedHandler::HandleRequest (Request* r) {
switch (r ->GetKind()) {
case Preview:
// handle the Preview request
break;

default:

// let Handler handle other requests
Handler: :HandleRequest(r) ;
1}

Dr. Radu Marinescu 41

Good Object-Oriented Design

Let’s Play with Smart Phones...

Dr. Radu Marinescu 42

Good Object-Oriented Design

Smart Phones. The Challenge... :)

et = clients may want to add new
managataiondar) features to these classes, but
ALY we are allowed to add just one
method to the hierarchy...
COmmunicaltcr \IPhope
ka2 T = What should we do? :)
+manaﬂeCaIendars +manageCalendar

Dr. Radu Marinescu 43

Good Object-Oriented Design

First Solution

<<interface>> =
[SmartPhone | <<';$frfgrc:>>
makeCall() _
manageCalendar() executeFeature(Communicator)

additionalFeature(Feature feat) sxecuteFeatura(iPhone
NV

- N .
Communicator IPhone TakePictureFeature
W— ;_:ﬁg(;i()ﬂg— +executeFeature(Communicator)
+manageCalendar() +manageCalendar() +execu|eFeeﬁJre(lPhone)

eature(Feature feat) eature(Feature feat)

feat.executeFeature(this)

—

feat.executeFeature(this)

Dr. Radu Marinescu 44

Good Object-Oriented Design

Implementation Options
= Js one executeFeature () method enough?

» we need TWO “containers” for the two distinct implementations
* one method per type of phone

» one method with a switch... phew! :(

= Factor out additionalFeature (Feature) in SmartPhone?

» transform SmartPhone in abstract class (from an interface)
» transform Feature in abstract class

» define executeFeature (SmartPhone) as a Template Method

+ protected hooks being executeFeature (IPhone) and
executeFeature (Communicator)

» switch stays in one place...

¢ independently on the number of new features

Dr. Radu Marinescu

45

Good Object-Oriented Design

The Matrix Reveals a Problem...
= Jtis easy add a new Feature, but hard to add a new
SmartPhone
» We have to change the entire Feature hierarchy!!
= _.and even if we change who says that all SmartPhone will

have all the additional features?!!

In other words:

WHAT IF THE MATRIX IS SPARSE?

Dr. Radu Marinescu

47

Good Object-Oriented Design

Double Dispatch

= Actually what we have is a bi-dimensional matrix of features:

Features
Take Video
Pictures |Call
IPhone X X
Smart
Phones | communicator

= Actually what we have is a bi-dimensional matrix of features:

Dr. Radu Marinescu

46

Good Object-Oriented Design

The True Problem: Cyclic Dependencies

/ <<interface>> Tl . —Sineracess
| SmartPhone RRRTSSNN Foators
Y8 .
\ ::ﬁzgzgg lendar() executeFeature(Communicator)
\ additionalFeature(Feature feat) LeTTTTTTTTTTTR exccutefeature(IPhone)
! e AN
1 s N J !
' L N / \
\ . N /
v P N 4 H
Communicator Phone TakePictureFeature
;2:&‘:&";:; :long ;mztgg:l()s"mg +executeFeature(Communicator)
+executeFeature(IPhone)
+manageCalendar() +manageCalendar()
itic eature(Feature feat) iti eature(Feature feat)
\
\
’

\

feat.executeFeature(this)

feat.executeFeature(this)

————

Dr. Radu Marinescu

48

Good Object-Oriented Design

Second Solution: Remove Cycles

<<interface>> [<<interface>> |
SmartPhone L Feature]
makeCall()
manageCalendar()
addirianaIFeaturesFeamre Ieat!
VIV [<<interface>>]
L S [IPhoneFeature |

Communicator

. execuloFeature(IPhone |
IPhone
- myNumber : long

'
- myLogo : String
+makeCall()

<<interface>> |
\

CommunicatorFeature
' executeFeature(Communicator
+makeCall() \ S
+manageCalendar() +manageCalendar() | L
+additionalFeature(Feature feat) -

+additionalFeature(Feature feat)
_—

\
\

\ .
\ P

N \

)
, R
'

'

]
i
|
1
- !
{ TakePictureFeature !
\ if(feats instanceof IPhoneFeature) +executeFeature(Communicator) !
((IPhoneF). eature(this); s+executeFeature(IPhone) |
NN i VideoCallFeature
~ +executeFeature(Communicaton

{
if(feats instanceof CommunicatorFeature)
((CommunicatorFeature)feat).executeFeature(this);
}

Dr. Radu Marinescu 49

Good Object-Oriented Design

Visitor

= allows new methods to be added to existing hierarchies
without modifying the interface of those hierarchies

= Each derivative (i.e. concrete class) of the visited hierarchy has
a method in the Visitor hierarchy

= Used for double dispatch:

» i.e. a double polymorphic dispatch

= Typical Usage: generate various reports by walking through
large data structures

Dr. Radu Marinescu 51

Good Object-Oriented Design

Visitor

Dr. Radu Marinescu

50

Good Object-Oriented Design

You want to use it when...

= Many distinct and unrelated operations need to be performed
on objects in an object structure and you don‘t want to
“pollute” their classes with these operations.

The classes defining the object structure rarely change, but
you often want to define new operations over the structure

Dr. Radu Marinescu 52

Good Object-Oriented Design

Structure

Visitor

VisitConcretek

B(ConcretetlementB)

A

VisitConcretek |

ConcreteVisitort ConcreteVisitor2
Vis creteElementA(ConcreteElementA) VisitConcreteElementA(C oElementA)
is pElementB{ConcreteElementB) VisitConcreteElementB(C mentB)

o] } Element

Accept(Visitor)

!—A—\

Accept{Visitorv) @ Accept(Visitorv) @
|
i
i
|

C C
OperationA() H OperationB()

v->VisitConcreteElementA(th |h‘1 l v->VisitConcreteElementBithi aaﬂ

Good Object-Oriented Design

Collaborations

anObjectStructure aConcreteElementA aConcreteElementB aConcreteVisitor

L

Accept(aVisitor)

VisitConcreteElementA{aConcreteElementA)

OperationA()

Accept(aVisitor)
VisitConcreteElementB(aConcreteElementB)

OperationB()

Dr. Radu Marinescu 54

Dr. Radu Marinescu 53
Good Object-Oriented Design
Double Dispatch
= Tt means that operations get executed depending on the kind
of request and types of two receivers, NOT one.
= some programming languages support this directly
» e.g. Lisp
= Not all programming languages support it directly
» like Java, C#, C++
Dr. Radu Marinescu 55

Good Object-Oriented Design

Object Traversal

= Responsibility can fall on:
1. the structure
2.the visitor
3.a separate iterator

= Most common is to use the structure itself, but an iterator is
used just as effectively.

= The visitor is used least often to do it, because traversal code
often gets duplicated.

Dr. Radu Marinescu 56

Good Object-Oriented Design

Consequences
= Adding new operations is easy!

= Gathers related operations and separates unrelated ones
» hmmm.... this is not necessarily a positive aspect!

» simplifying classes defining elements and algorithms defined by
visitors.

= Adding new ConcreteElement classes is hard.

= Forces you to provide public operations that access an
element’s internal state, which may compromise encapsulation

Dr. Radu Marinescu

57

Good Object-Oriented Design

Acyclic Visitor
= used for a volatile hierarchy
» new derivatives

» quick compilation time is needed

= Acyclic Visitor breaks the dependency cycle by making the
visitor base class degenerate

» i.e. with no methods

= Acyclic Visitor is like a sparse matrix!

Dr. Radu Marinescu

59

Good Object-Oriented Design

Issue of Cyclic Dependencies
= Bidirectional Dependency

» Visited hierarchy depends on the base class of the visitor hierarchy
» base class of the visitor hierarchy depends on each derivative of the
visited hierarchy

= Cycle of dependencies ties all visited derivatives together

» difficult to compile incrementally
» difficult to add new derivatives of the visited hierarchy

Dr. Radu Marinescu 58
Good Object-Oriented Design
<<interface>> [<<interface>> |
SmartPhone | Feature |
‘makeCall()
‘manageCalendar()
additionaIFeafuresFeature Ieat:
IAVAZN [<<interface>>]
e N [IPhoneFeature |
N executeFeature(IPhone) |
ez = <<interface>>]
Communicator IPhone | CommunicatorFeature |
[-myNumber:long | [-mylogo:Sting | ' executeFeature(Communicator) |
“makeCall() “+makeCall() | YA
+manageCalendar() +manageCalendar() \ L7 T
+addirionalFeslure‘Festure leat: +additionalFeature‘Feature feat= \ - !
4 i - :
S) | L. i
i { TakePictureFeature ;
\ if(feats instanceof IPhoneFeature) +executeFeature(Communicator) !
((IPhoneFeature)feat).executeFeature(this); | LtexecuteFeature(IPhone !
Ry } [VideoCallFeature |
S~ +executeFeature(Communicator
{
if(feats instanceof CommunicatorFeature)
((CommunicatorFeature)feat).executeFeature(this);
¥

Dr. Radu Marinescu

60

Good Object-Oriented Design

A Class Inflation Problem...

Dr. Radu Marinescu 61

Good Object-Oriented Design

Motivation
= A TextView has 2 features:
» borders: -
¢ 3 options: none, flat, 3D

» scroll-bars:
¢ 4 options: none, side, bottom,

aTextView

= How many Classes?
»3x4 =121

¢ e.g. TextView, TextViewWithNoBorder&SideScrollbar,
TextViewWithNoBorder&BottomScrollbar,
TextViewWithNoBorder&Bottom&SideScrollbar,
TextViewWith3DBorder, TextViewWith3DBorder&SideScrollbar,
TextViewWith3DBorder&BottomScrollbar,
TextViewWith3DBorder&Bottom&SideScrollbar,

Dr. Radu Marinescu 62

Good Object-Oriented Design

Solution 1: Use Object Composition

TextView
aBorder
verticalScroll
horizontalSerd I<g——
Y
Border Scrollbar
Vertical Horizontal
[NoBorder | | 3pBorder | [Flat |Scro|lhar| ‘Scrollbar ‘
= [s it Open-Closed?
Dr. Radu Marinescu 63

Good Object-Oriented Design

Solution 1: The Source-Code

class TextView {
Border myBorder;
ScrollBar verticalBar;
ScrollBar horizontalBar;

public wvoid draw() {
myBorder.draw() ;
verticalBar.draw() ;
horizontalBar.draw() ;
// code to draw self .

}

// etc.

Dr. Radu Marinescu 64

Good Object-Oriented Design

Solution 2: Change the Skin, not the Guts!

A

VisuaDecorator

componernt<-

A

£ N

Vertical Horizontal
SbBorder m Scrollbar Scrollbar

= TextView has no borders or scrollbars!
= Add borders and scrollbars on top of a TextView

Dr. Radu Marinescu 65

Good Object-Oriented Design

Decorator Pattern

Changing the skin of an object

Good Object-Oriented Design

Basic Aspects

= Intent
» Add responsibilities to a particular object rather than its class
* Attach additional responsibilities to an object dynamically.
» Provide a flexible alternative to subclassing

= Also Known As
» Wrapper

= Applicability
» Add responsibilities to objects transparently and dynamically
+ i.e. without affecting other objects
» Extension by subclassing is impractical
¢ may lead to too many subclasses

Dr. Radu Marinescu 67

Dr. Radu Marinescu 66
Good Object-Oriented Design
Structure
C P
Operation()
| | comj
ponent
ConcreteComponent Decorator
Operation() Operation() O-f======-====-====-=---= C
ConcreteDecoratorA ConcreteDecoratorB
Decorator::Operation();
Operation() Operation() ©------ Aééga‘:’kgrnav%{;z? fon(}
AddedBehavior()
addedState

Dr. Radu Marinescu 68

Good Object-Oriented Design

Participants & Collaborations

= Component

» defines the interface for objects that can have responsibilities added
dynamically

= ConcreteComponent
» the "bases" object to which additional responsibilities can be added

= Decorator

» defines an interface conformant to Component's interface
* for transparency
» maintains a reference to a Component object

ConcreteDecorator
» adds responsibilities to the component

Dr. Radu Marinescu 69

Good Object-Oriented Design

Consequences

= More flexibility than static inheritance
» allows to mix and match responsibilities
» allows to apply a property twice

= Avoid feature-laden classes high-up in the hierarchy
» "pay-as-you-go" approach
» easy to define new types of decorations

= Lots of little objects
» easy to customize, but hard to learn and debug
= A decorator and its component aren't identical

» checking object identification can cause problems
¢ e.g.if (aComponent instanceof TextView) blah

Dr. Radu Marinescu

70

Good Object-Oriented Design

Implementation Issues

= Keep Decorators lightweight
» Don't put data members in VisualComponent
» use it for shaping the interface

= Omitting the abstract Decorator class
» if only one decoration is needed
» subclasses may pay for what they don't need

Dr. Radu Marinescu 71

Good Object-Oriented Design

Decorator Example from Java API

BufferedInputStreamn
Reading FileInputStream Jv ASCIInputStream
File Filel, —w | —= || — ||
Example. 3 : -
java inputFile bufferedFile cin

Dr. Radu Marinescu

72

Good Object-Oriented Design

Good Object-Oriented Design

Source Code for Java API Example
import java.io.*;

class ReadingFileExample {
public static void main(String args[])
throws Exception {
FileInputStream inputFile;
BufferedInputStream bufferedFile;
ASCIIInputStream cin;

inputFile = new FileInputStream("ReadFileEx.java");
bufferedFile = new BufferedInputStream(inputFile);
cin = new ASCIIInputStream(bufferedFile);

System.out.println(cin.readWord());
for (int k=0 ; k < 4; k++)
System.out.println(cin.readLine());

Decorator vs. Chain of Responsibility

Chain of Responsibility

Comparable to “event-oriented”
architecture

The "filter" objects are of equal rank
User views the chain as a "launch and
leave" pipeline

Arequest is routinely forwarded until a
single filter object handles it.

many (or all) filter objects could contrib.

to each request's handling.

All the handlers are peers (like nodes
in a linked list) — "end of list" condition
handling is required.

Decorator

Comparable to layered architecture
(layers of an onion)

A"core" object is assumed, all "layer"
objects are optional

User views the decorated object as an
enhanced object

A layer object always performs pre or
post processing as the request is
delegated.

All the layer objects ultimately delegate
to a single core object - "end of list"
condition handling is not required.

Dr. Radu Marinescu 73

Dr. Radu Marinescu 74

