
Good Object-Oriented Design

Dr. Radu Marinescu 1

Creational Patterns

Good Object-Oriented Design

Dr. Radu Marinescu 2

Overview of creational patterns

! Abstract the instantiation process

! Help make a system independent of how its objects are

created, composed, represented

! Class creational pattern

!uses inheritance to vary the class that’s instantiated

!Factory Method

! Object creational pattern

!delegates instantiation to another object

!Abstract Factory, Prototype, Singleton, Builder

Good Object-Oriented Design

Dr. Radu Marinescu 3

Class Diagram for the Maze

rooms

MapSite

Room Wall DoorMaze

enter()=0;

enter()
setSide()
getSide()

roomNumber

enter() enter()

isOpen

1 *

1

4

Good Object-Oriented Design

Dr. Radu Marinescu 4

Common abstract class for all Maze Components

! Meaning of enter() depends on what you are entering.

! room ! location changes

!door ! if door is open go in; else hurt your nose ;)

enum Direction {North, South, East, West};

class MapSite {
public:
 virtual void enter() = 0;
};

Good Object-Oriented Design

Dr. Radu Marinescu 5

Components of the maze – Maze

class Maze {
public:
 void addRoom(Room*);
 Room * roomNo(int) const;
private:
};

A maze is a collection
of rooms. Maze can
find a particular room
given the room number.

roomNo() could do a

lookup using a linear
search or a hash table
or a simple array.

Good Object-Oriented Design

Dr. Radu Marinescu 6

Components of the maze – Wall & Door & Room

class Wall : public MapSite {
public:
 Wall();
 virtual void enter();
};

class Door : public MapSite {
public:
 Door(Room* = 0, Room* = 0);
 virtual void enter();
 Room* otherSideFrom(Room*);
private:
 Room* room1;
 Room* room2;
 bool isOpen;
};

class Room : public MapSite {
public:
 Room(int roomNo);
 MapSite* getSide(Direction) const;
 void setSide(Direction, MapSite*);

 void enter();
private:
 MapSite* sides[4];
 int roomNumber;
}

Good Object-Oriented Design

Dr. Radu Marinescu 7

We want to play a game!

rooms

MapSite

Room Wall Door

Maze

enter()=0;

enter()
setSide()
getSide()

roomNumber

enter() enter()

isOpen

 1 1..n

1

4

MazeGame

Player

1..n

1

Good Object-Oriented Design

Dr. Radu Marinescu 8

Creating the Maze

! The problem is inflexibility

!hard-coding of maze layout

! Pattern can make game creation more flexible... not smaller!

Maze* MazeGame::createMaze() {
 Maze* aMaze = new Maze;
 Room* r1 = new Room(1);
 Room* r2 = new Room(2);
 Door* theDoor = new Door(r1, r2);
 aMaze->addRoom(r1);
 aMaze->addRoom(r2);

 r1->setSide(North, new Wall); r1->setSide(East, theDoor);
 r1->setSide(South, new Wall); r1->setSide(West, new Wall);

 r2->setSide(North, new Wall); r2->setSide(East, new Wall);
 r2->setSide(South, new Wall); r2->setSide(West, theDoor);
}

r1 r2

Good Object-Oriented Design

Dr. Radu Marinescu 9

We want Flexibility in Maze Creation

! Be able to vary the kinds of mazes

!Rooms with bombs

!Walls that have been bombed

!Enchanted rooms
" Need a spell to enter the door!

Good Object-Oriented Design

Dr. Radu Marinescu 10

Idea 1:
Subclass MazeGame, override createMaze

! Lots of code duplication... :((

Maze* BombedMazeGame::createMaze() {
 Maze* aMaze = new Maze;
 Room* r1 = new RoomWithABomb(1);
 Room* r2 = new RoomWithABomb(2);
 Door* theDoor = new Door(r1, r2);
 aMaze->addRoom(r1);
 aMaze->addRoom(r2);

 r1->setSide(North, new BombedWall);
 r1->setSide(East, theDoor);
 r1->setSide(South, new BombedWall);
 r1->setSide(West, new BombedWall);
 // etc...etc...
}

Good Object-Oriented Design

Dr. Radu Marinescu 11

Idea 2: Use a Factory Method

MapSite

Room Wall Door

enter()=0;

enter()
setSide()
getSide()

roomNumber

enter() enter()

isOpen

1

4

MazeGame

BombedMazeGame

 makeWall()
 createMaze()

 makeWall()

BombedWall

enter()
return new BombedWall

Maze* MazeGame::CreateMaze () {
 Maze* aMaze = makeMaze();

 Room* r1 = makeRoom(1);
 Room* r2 = makeRoom(2);
 Door* theDoor = makeDoor(r1, r2);

 aMaze->addRoom(r1);
 aMaze->addRoom(r2);

 r1->SetSide(North, makeWall());
 r1->SetSide(East, theDoor);
 r1->SetSide(South, makeWall());
 r1->SetSide(West, makeWall());

 r2->SetSide(North, makeWall());
 r2->SetSide(East, makeWall());
 r2->SetSide(South, makeWall());
 r2->SetSide(West, theDoor);

 return aMaze;
 }

Good Object-Oriented Design

Dr. Radu Marinescu 13

Factory Method

Good Object-Oriented Design

Dr. Radu Marinescu 14

Basic Aspects

! Intent

!Define an interface for creating an object, but let subclasses
decide which class to instantiate.

!Factory Method lets a class defer instantiation to subclasses

! Also Known As

!Virtual Constructor

! Applicability

!A class can’t anticipate the class of objects it must create

!A class wants its subclasses to specify the objects it creates

!Classes delegate responsibility to one of several helper subclasses

Good Object-Oriented Design

Dr. Radu Marinescu 15

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 16

Participants & Collaborations

! Product

! defines the interface of objects that will be created by the FM

! Concrete Product implements the interface

! Creator

! declares the FM, which returns a product of type Product.
" may define a default implementation of the FM

" may call the FM to create a product

! ConcreteCreator

! overrides FM to provide an instance of ConcreteProduct

Creator relies on its subclasses to define the factory method so that it
returns an instance of the appropriate ConcreteProduct

Good Object-Oriented Design

Dr. Radu Marinescu 17

Consequences

! Eliminate binding of application specific classes into your code.

!creational code only deals with the Product interface

! Provide hooks for subclassing

!subclasses can change this way the product that is created

! Clients might have to subclass the Creator just to create a

particular ConcreteProduct object.

Good Object-Oriented Design

Dr. Radu Marinescu 18

Implementation Issues

! Varieties of Factory Methods

!Creator class is abstract
" does not provide an implementation for the FM it declares

" requires subclasses

!Creator is a concrete class
" provides default implementation

" FM used for flexibility

" Create objects in a separate operation so that subclasses can

override it

! Parametrization of Factory Methods

!A variation on the pattern lets the factory method create
multiple kinds of products

!a parameter identifies the type of Product to create

!all created objects share the Product interface

Good Object-Oriented Design

Dr. Radu Marinescu 19

Parameterizing the Factory

class Creator {
public:
 virtual Product * create(productId);
};

Product* Creator::create(ProductId id) {
 if (id == MINE) return new MyProduct;
 if (id == YOURS) return new YourProduct;
}

Product * MyCreator::create(ProductId id) {
 if (id == MINE) return new YourProduct;
 if (id == YOURS) return new MyProduct;
 if (id == THEIRS) return TheirProduct;
 return Creator::create(id); // called if others fail
}

! selectively extend or change products that get created

Good Object-Oriented Design

Dr. Radu Marinescu

Static Factory Method

20

abstract class Shape {
! public abstract void draw();
! public abstract void erase();
! public static Shape factory(String type) {
!!! if(type.equals("Circle")) return new Circle();
!!! if(type.equals("Square")) return new Square();
!!! throw new RuntimeException(
!!!!! "Bad shape creation: " + type);
! }
}
!

class Circle extends Shape {
! Circle() {} // Package-access constructor
! public void draw() {
!!! System.out.println("Circle.draw");
! }
! public void erase() {
!!! System.out.println("Circle.erase");
! }
}

Good Object-Oriented Design

Dr. Radu Marinescu 21

Java: forName and Factory Methods

class Creator {
 public Product FactoryMethod(String productType) {
 Class productClass = Class.forName(productType);
 return (Product) productClass.newInstance();
 }
}

Product theBest = new Creator().FactoryMethod("ProductA");

theBest.newInstance();

import java.util.*;

class AbstractFactory {
 public Product make(String c) {
 try {
 Class prod = Class.forName(c);
 return (Product) prod.newInstance();
 }
 catch(Exception e) {
 System.out.println("Error");
 System.exit(1);
 return null;
 }
 }
}

class Main {
 public static void main(String[] args) {
 AbstractFactory af = new AbstractFactory();

 af.make(args[0]).doSomething();
 }
}

abstract class Product {
 abstract public void doSomething();
}

class ProductA extends Product {
 public void doSomething() {
 System.out.println("ProductA");
 }
}

class ProductB extends Product {
 public void doSomething() {
 System.out.println("ProductB");
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu 23

C++: Templates to Avoid Subclassing

template <class ProductType>
class Creator
 {
 public:
 virtual Product* FactoryMethod();
 }

template <class ProductType>
Product* Creator::FactoryMethod() {
 return new ProductType();
}

//
Creator<ConcreteProduct> theBest;
Product* bestProduct = theBest.FactoryMethod();

Good Object-Oriented Design

Dr. Radu Marinescu 24

Revisiting the Solution to the Maze Problem...

MapSite

Room Wall Door

enter()=0;

enter()
setSide()
getSide()

roomNumber

enter() enter()

isOpen

1

4

MazeGame

BombedMazeGame

 makeWall()
 createMaze()

 makeWall()

BombedWall

enter()
return new BombedWall()

Good Object-Oriented Design

Dr. Radu Marinescu 25

Idea 3:
Factory Method in Product

! Make the product responsible for creating itself

!e.g. let the Door know how to construct an instance of it rather
than the MazeGame

! The client of the product needs a reference to the "creator"

!specified in the constructor

! see next slide...

class Room : public MapSite {
 public:
 virtual Room* makeRoom(int no) {

return new Room(no);
}

 // ...
};

class RoomWithBomb : public Room {
 public:
 Room* makeRoom(int no) {

return new RoomWithBomb();
}

 // ...
};

// ...

class MazeGame {
 protected:
 Room* roomMaker;
 // ...
 public:
 MazeGame(Room* rfactory) {
 roomMaker = rfactory;
 }

 public Maze* CreateMaze() {
 Maze aMaze = new Maze();

 Room r1 = roomMaker->makeRoom(1);
 // ...
};

Good Object-Oriented Design

Dr. Radu Marinescu 27

The Prototype Pattern

Good Object-Oriented Design

Dr. Radu Marinescu 28

Basic Aspects

! Intent
! Specify the kinds of objects to create using a prototypical instance

! Create new objects by copying this prototype

! Applicability
! when a client class should be independent of how its products are created,

composed, and represented and

! when the classes to instantiate are specified at run-time

Good Object-Oriented Design

Dr. Radu Marinescu 29

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 30

Participants & Collaborations

! Prototype

!declares an interface for cloning itself.

! ConcretePrototype

! implements an operation for cloning itself.

! Client

!creates a new object by asking a prototype to clone itself.

! A client asks a prototype to clone itself.

! The client class must initialize itself in the constructor
!with the proper concrete prototype.

Good Object-Oriented Design

Dr. Radu Marinescu 31

Consequences

! Adding and removing products at run-time

! Reduced subclassing

!avoid parallel hierarchy for creators

! Each subclass of Prototype must implement clone

!difficult when classes already exist or

! internal objects don't support copying or have circular references

Good Object-Oriented Design

Dr. Radu Marinescu 32

Implementation Issues

! Using a Prototype manager

!number of prototypes isn't fixed
" keep a registry ! prototype manager

!clients instead of knowing the prototype know a manager
" associative store

! Initializing clones

!heterogeneity of initialization methods

!write an Initialize method

! Implementing the clone operation

!shallow vs. deep copy

Good Object-Oriented Design

Dr. Radu Marinescu 33

Shallow Copy vs. Deep Copy

Original

Shallow Copy

Good Object-Oriented Design

Dr. Radu Marinescu 34

Shallow Copy vs. Deep Copy (2)

Original

Deep Copy

Good Object-Oriented Design

Dr. Radu Marinescu 35

Cloning in C++ – Copy Constructors

class Door {
 public:
 Door();
 Door(const Door&);
 virtual Door* clone() const;
 virtual void Initialize(Room*, Room*);
 private:
 Room* room1; Room* room2;
};

//Copy constructor
Door::Door (const Door& other) {
 room1 = other.room1; room2 = other.room2;
}

Door* Door::clone() {
 return new Door(*this);
}

Good Object-Oriented Design

Dr. Radu Marinescu 36

Cloning in Java – Object clone()

protected Object clone() throws CloneNotSupportedException

! Creates a clone of the object.
! allocate a new instance and,

! place a bitwise clone of the current object in the new object.

class Door implements Cloneable {
 public void Initialize(Room a, Room b) {
 room1 = a; room2 = b;
 }

 public Object clone() throws CloneNotSupportedException {
 return super.clone();
 }
 Room room1, room2;
}

class Room : public MapSite {
 public:
 virtual Room* makeRoom(int no) {

return new Room(no);
}

 // ...
};

class RoomWithBomb : public Room {
 public:
 Room* makeRoom(int no) {

return new RoomWithBomb();
}

 // ...
};

// ...

class MazeGame {
 protected:
 Room* roomMaker;
 // ...
 public:
 MazeGame(Room* rfactory) {
 roomMaker = rfactory;
 }

 public Maze* CreateMaze() {
 Maze aMaze = new Maze();

 Room r1 = roomMaker->makeRoom(1);
 // ...
};

Is this a Prototype?

class MazePrototypeFactory {
public:
 MazePrototypeFactory(Maze*, Wall*, Room*, Door*);

 virtual Maze* MakeMaze() const;
 virtual Room* MakeRoom(int) const;
 virtual Wall* MakeWall() const;
 virtual Door* MakeDoor(Room*, Room*) const;
private:
 Maze* _prototypeMaze; Room* _prototypeRoom;
 Wall* _prototypeWall; Door* _prototypeDoor;
};

MazePrototypeFactory::MazePrototypeFactory (
 Maze* m, Wall* w, Room* r, Door* d) {
 _prototypeMaze = m; _prototypeWall = w;
 _prototypeRoom = r; _prototypeDoor = d;
}

Wall* MazePrototypeFactory::MakeWall () const {
 return _prototypeWall->Clone();
}

Door* MazePrototypeFactory::MakeDoor (
 Room* r1, Room *r2) const {
 Door* door = _prototypeDoor->Clone();
 door->Initialize(r1, r2);
 return door;
}

38

Creating a maze for a game………..

MazePrototypeFactory simpleMazeFactory
(
 new Maze, new Wall, new Room, new Door
);

MazeGame game;
Maze* maze =
game.CreateMaze(simpleMazeFactory);

Good Object-Oriented Design

Dr. Radu Marinescu 39

Abstract Factory

Good Object-Oriented Design

Dr. Radu Marinescu 40

Introductive Example

Good Object-Oriented Design

Dr. Radu Marinescu 41

Basic Aspects

! Intent

!Provide an interface for creating families of related or
dependent objects without specifying their concrete classes

! Applicability

!System should be independent of how its products are created,
composed and represented

!System should be configured with one of multiple families of
products

!Need to enforce that a family of product objects is used together

Good Object-Oriented Design

Dr. Radu Marinescu 42

Structure

Good Object-Oriented Design

Dr. Radu Marinescu 43

Participants & Collaborations

! Abstract Factory

!declares an interface for operations to create abstract products

! ConcreteFactory

! implements the operations to create products

! AbstractProduct

!declares an interface for a type of product objects

! ConcreteProduct

!declares an interface for a type of product objects

! Client

!uses only interfaces decl. by AbstractFactory and AbstractProduct

! A single instance of a ConcreteFactory created.
!create products having a particular implementation

Good Object-Oriented Design

Dr. Radu Marinescu 44

Consequences

! Isolation of concrete classes
!appear in ConcreteFactories not in client's code

! Exchanging of product families becomes easy
!a ConcreteFactory appears only in one place

" easy to change

! Promotes consistency among products
!all products in a family change at once, and change together

! Supporting new kinds of products is difficult
! requires a change in the interface of AbstractFactory
! ... and consequently all subclasses

Good Object-Oriented Design

Dr. Radu Marinescu 45

Implementation Issues

! Factories as Singletons

! to assure that only one ConcreteFactory per product family is
created

! Creating the Products

!collection of Factory Methods

!can be also implemented using Prototype
" define a prototypical instance for each product in ConcreteFactory

! Defining Extensible Factories

!a single factory method with parameters

!more flexible, less safe!

Good Object-Oriented Design

Dr. Radu Marinescu 46

Creating Products...

! ...using own factory methods

abstract class WidgetFactory {
 public Window createWindow();
 public Menu createMenu();
 public Button createButton();
}

class MacWidgetFactory extends WidgetFactory {
 public Window createWindow()
 { return new MacWindow() }
 public Menu createMenu()
 { return new MacMenu() }
 public Button createButton()
 { return new MacButton() }
}

abstract class WidgetFactory {
 private Window windowFactory;
 private Menu menuFactory;
 private Button buttonFactory;

 public Window createWindow()
 { return windowFactory.createWindow() }
 public Menu createMenu();
 { return menuFactory.createWindow() }
 public Button createButton()
 { return buttonFactory.createWindow() }
}

class MacWidgetFactory extends WidgetFactory {
 public MacWidgetFactory() {
 windowFactory = new MacWindow();
 menuFactory = new MacMenu();
 buttonFactory = new MacButton();
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu

Creating Products...
! ... using product's factory methods

!subclass just provides the concrete products in the constructor

!spares the re-implementation of FM's in subclasses

47

Good Object-Oriented Design

Dr. Radu Marinescu 48

Singleton

Good Object-Oriented Design

Dr. Radu Marinescu 49

Basics

! Intent

!Ensure a class has only one instance and provide a global point of
access to it

! Applicability

!want exactly one instance of a class

!accessible to clients from one point

!want the instance to be extensible

!can also allow a countable number of instances

! improvement over global namespace

!better than static class:
" can’t change mind

" methods never virtual

Good Object-Oriented Design

Dr. Radu Marinescu 50

Structure of the Pattern

Put constructor in private/protected data section

Good Object-Oriented Design

Dr. Radu Marinescu 51

Participants and Collaborations

! Singleton

!defines an Instance method that becomes the single "gate" by

which clients can access its unique instance.
" Instance is a class method (static member function in C++)

!may be responsible for creating its own unique instance

! Clients access Singleton instances solely through the Instance

method

Good Object-Oriented Design

Dr. Radu Marinescu 52

Consequences

! Controlled access to sole instance

! Permits refinement of operations and representation

! Permits a variable (but precise) number of instances

! Reduced global name space

Good Object-Oriented Design

Dr. Radu Marinescu 53

Making a single MazeFactory

Good Object-Oriented Design

Dr. Radu Marinescu 54

What if there are subclasses of MazeFactory?

