
Good Object-Oriented Design

Dr. Radu Marinescu 66

Principles and Rules of Object-Oriented Design

Good Object-Oriented Design

Dr. Radu Marinescu 67

Bibliography

Good Object-Oriented Design

Dr. Radu Marinescu 68

Signs of Rotting Design [Martin, 2002]
! Rigidity

! code difficult to change (Continuity)

! management reluctance to change anything becomes policy

! Fragility
! code breaks in unexpected places (Protection)

! even small changes can cause cascading breaks

! Immobility
! code is so tangled that it's impossible to reuse anything (Composability)

" lots of semantical (or even syntactical) duplication

! Viscosity
! much easier to hack than to preserve original design

" “easy to do the wrong thing, but hard to do the right thing” (R.Martin)

! software viscosity and environment viscosity

Good Object-Oriented Design

Dr. Radu Marinescu 69

Signs of Rotting Design (2) [Martin, 2002]

! Needles Complexity
! make design more general than needed

" e.g. interfaces and/or abstract classes with just one implementor

! constructs and mechanisms that are never used

! Needles Repetition
! copy-paste-adapt

" bugs are cloned as well

! sign of a missing abstraction

! Opacity
! convoluted manner of writing code (hampers understandability)

! pair-programming and refactoring may help fighting against opaque code

Good Object-Oriented Design

Dr. Radu Marinescu 70

Causes of Rotting Design
1. Changing Requirements

! is inevitable

! both better designs and poor designs have to face the changes;

! good designs are stable

2. Dependency Management
! the issue of coupling and cohesion

! It can be controlled!
" create dependency firewalls

All systems change during their life-cycles.

This must be borne in mind when developing systems expected

to last longer than the first version.
I. Jacobson, OOSE, 1992

Good Object-Oriented Design

Dr. Radu Marinescu 71

Example of Rigidity and Immobility

Copy

Read
Keyboard

Write
Printer

void Copy(){

 int c;

 while ((c = ReadKeyboard()) != EOF)

 WritePrinter(c);

}

Write
Disk

enum OutputDevice {printer, disk};

void Copy(OutputDevice dev){

 int c;

 while((c = ReadKeyboard())!= EOF)

 if(dev == printer)

 WritePrinter(c);

 else

 WriteDisk(c);

}

Good Object-Oriented Design

Dr. Radu Marinescu 72

Open-Closed Principle (OCP)

Software entities should be open for extension,

but closed for modification
B. Meyer, 1988 / quoted by R. Martin, 1996

! Be open for extension

!module's behavior can be extended

! Be closed for modification

!source code for the module must not be changes

! Modules should be written so they can be extended

 without requiring them to be modified

Good Object-Oriented Design

Dr. Radu Marinescu 73

Open the door ...

! How to make the Car run efficiently with a TurboEngine?

! Only by changing the Car!
! ...in the given design

Good Object-Oriented Design

Dr. Radu Marinescu 74

 ... But Keep It Closed!

! A class must not depend on a concrete class!

! It must depend on an abstract class ...

! ...using polymorphic dependencies (calls)

Good Object-Oriented Design

Dr. Radu Marinescu 75

OCP Heuristics

! RTTI is ugly and dangerous
! RTTI = Run-Time Type Information

! If a module tries to dynamically cast a base class pointer to several derived
classes, any time you extend the inheritance hierarchy, you need to change the
module

! recognize them by type switch or if-else-if structures

! Not all these situations violate OCP all the time
! when used only as a "filter"

RTTI is Ugly and Dangerous!

Good Object-Oriented Design

Dr. Radu Marinescu 76

OCP Applied on Example

Copy

Reader Writer

Keyboard
Reader

Printer
Writer

Disk
Writer

class Reader {

 public:

 virtual int read()=0;

};

class Writer {

 public:

 virtual void write(int)=0;

};

void Copy(Reader& r, Writer& w){

 int c;

 while((c = r.read()) != EOF)

 w.write(c);

}

What if we decide to change that only each second character is written?

Good Object-Oriented Design

Dr. Radu Marinescu 77

Strategic Closure

! Closure not complete but strategic

1. Abstraction to gain explicit closure
! provide class methods which can be dynamically invoked

" to determine general policy decisions

! design using abstract ancestor classes

2. Use "Data-Driven" approach to achieve closure
! place volatile policy decisions in a separate location

" e.g. a file or a separate object

! minimizes future change locations

No significant program can be 100% closed

 R.Martin

Good Object-Oriented Design

Dr. Radu Marinescu 78

Procedural vs. OO Architecture

Procedural
Architecture

Object-Oriented
Architecture

Good Object-Oriented Design

Dr. Radu Marinescu 79

Dependency Inversion Principle

I. High-level modules should not depend on low-level modules.

 Both should depend on abstractions.

II. Abstractions should not depend on details.

 Details should depend on abstractions
R. Martin, 1996

! A base class in an inheritance hierarchy should not know any of its

subclasses

! Modules with detailed implementations are not depended upon,

but depend themselves upon abstractions

! OCP states the goal; DIP states the mechanism;

Good Object-Oriented Design

Dr. Radu Marinescu 80

DIP Related Heuristic

! Use inheritance to avoid direct bindings to classes:

 Design to an interface,
not an implementation!

Client

Interface
(abstract class)

Implementation
(concrete class)

Good Object-Oriented Design

Dr. Radu Marinescu 81

Design to an Interface

! Abstract classes/interfaces:
! tend to change less frequently

! abstractions are ‘hinge points’ where it is easier to extend/modify

! shouldn’t have to modify classes/interfaces that represent the abstraction (OCP)

! Exceptions
! Some classes are very unlikely to change;

" therefore little benefit to inserting abstraction layer

" Example: String class

! In cases like this can use concrete class directly
" as in Java or C++

Good Object-Oriented Design

Dr. Radu Marinescu 82

DIP Related Heuristic (2)

! Avoid structures in which higher-level layers depend on lower-level

abstractions:
! In example below, Policy layer is ultimately dependent on Utility layer.

Avoid Transitive Dependencies

Policy
Layer

Mechanism
Layer

Utility
Layer

depends on depends on

Good Object-Oriented Design

Dr. Radu Marinescu 83

Solution to Transitive Dependencies

! Use inheritance and abstract ancestor classes to effectively eliminate

transitive dependencies:
! …also a matter of interface ownership

Policy
Layer

Mechanism
Layer

Utility
Layer

depends on

depends on Mechanism Service
Interface

Policy Service
Interface

Good Object-Oriented Design

Dr. Radu Marinescu 84

DIP - Related Heuristic

! If you cannot find a satisfactory solution for the class you are

designing, try delegating responsibility to one or more classes:

When in doubt, add a level of indirection

Problem
Holder

Problem
Solver

Good Object-Oriented Design

Dr. Radu Marinescu 85

When in doubt ...

! It is generally easier to remove or by-pass existing levels of

indirection than it is to add them later:

XSo, Blue class re-implements
some or all of green class’s
responsibilities for efficiency and
calls red object directly

Blue class’s indirect message
calls to red class fail to meet
some criteria (e.g. real-time
constraints, etc.)

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. Nierstrasz
Lecture 8

Radu Marinescu

86

Initial Design with Duplicated Methods

Process

ConfigurableProcess

CsServer UCDLink EventReceiver TrapFilter

SNMPCollector
Duplication in

method ReadConfigFiles()

Good Object-Oriented Design

Dr. Radu Marinescu 87

Template Method Pattern

Class
templateMethod()

hookMethod1()

hookMethod2()

SpecializedClass

hookMethod1()

hookMethod2()

//Some common code
hookMethod1();
//Some more common code
hookMethod2();
//Even more common code

Abstract or default
implementation

Specialized behavior
(if necessary)

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. Nierstrasz
Lecture 8

Radu Marinescu

88

ConfigurableProcess

ReadConfigFiles()

hookMethod()

EventReceiver

hookMethod()

CsServer

 if (statusOfProcess == Running)
 {
 throw ConfigFile::ProcessRunning();
 }
 if ((statusOfProcess == Idle) ||
 (statusOfProcess == Paused))
 {
 hookMethod();
 statusOfProcess = Configured;
 }
 else {
 string err("Config File already read!!");
 throw ConfigFile::ConfigurationFileError(err.c_str());
 }

if (pAffacade->ReadConfigs() != true)
{
 pAffacade->ClearConfigs();
 throw ConfigFile::ConfigurationFileError();
};

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. Nierstrasz
Lecture 8

Radu Marinescu

89

Process

ConfigurableProcess

UCDLink EventReceiver TrapFilter

SNMPCollector

CsServer

Duplication Resolved

Good Object-Oriented Design

Dr. Radu Marinescu 90

 Liskov Substitution Principle (LSP)

Inheritance should ensure that any property proved about

supertype objects also holds for subtype objects
B. Liskov, 1987

! The key of OCP: Abstraction and Polymorphism

! Implemented by inheritance

!How do we measure the quality of inheritance?

Functions that use pointers or references to base classes

must be able to use objects of derived classes

without knowing it.
R. Martin, 1996

Good Object-Oriented Design

Dr. Radu Marinescu 91

Inheritance Appears Simple

class Bird { // has beak, wings,...

 public: virtual void fly(); // Bird can fly

};

class Parrot : public Bird { // Parrot is a bird

 public: virtual void mimic(); // Can Repeat words...

};

// ...

Parrot mypet;

mypet.mimic(); // my pet being a parrot can Mimic()

mypet.fly(); // my pet “is-a” bird, can fly

Good Object-Oriented Design

Dr. Radu Marinescu 92

Penguins Fail to Fly!
class Penguin : public Bird {

 public: void fly() {

 error (“Penguins don’t fly!”); }

};

void PlayWithBird (Bird& abird) {

 abird.fly(); // OK if Parrot.

 // if bird happens to be Penguin...OOOPS!!

}

! Does not model: “Penguins can’t fly”

! It models “Penguins may fly, but if they try it is error”

! Run-time error if attempt to fly ! not desirable

! Think about Substitutability - Fails LSP

Good Object-Oriented Design

Dr. Radu Marinescu 93

Design by Contract

! Advertised Behavior of an object:
! advertised Requirements (Preconditions)

! advertised Promises (Postconditions)

When redefining a method in a derivate class, you may only

replace its precondition by a weaker one, and

its postcondition by a stronger one
B. Meyer, 1988

Derived class services should require no more and promise no less

int Base::f(int x);
// REQUIRE: x is odd
// PROMISE: return even int

int Derived::f(int x);
// REQUIRE: x is int
// PROMISE: return 8

Good Object-Oriented Design

Dr. Radu Marinescu

Design by Contract

! Impose a certain obligation to be guaranteed on entry by any client

module that calls it: the routine's precondition

! Guarantee a certain property on exit: the routine's postcondition

! Maintain a certain property, assumed on entry and guaranteed on exit:

the class invariant

! What does it expect?

! What does it guarantee?

! What does it maintain?

94

Good Object-Oriented Design

Dr. Radu Marinescu 95

Square IS-A Rectangle?

! Should I inherit Square from Rectangle?

Square

?

Good Object-Oriented Design

Dr. Radu Marinescu 96

The Answer is ...

! Override setHeight and setWidth

! duplicated code...

! static binding (in C++)
" void f(Rectangle& r) { r.setHeight(5); }

" change base class to set methods virtual

! The real problem
void g(Rectangle& r) {

 r.setWidth(5); r.setHeight(4);

 // How large is the area?

}

! 20! ... Are you sure? ;-)

IS-A relationship refers to the BEHAVIOR of the class!

Good Object-Oriented Design

Dr. Radu Marinescu 97

LSP is about Semantics and Replacement

! Understand before you design
! The meaning and purpose of every method and class must be clearly

documented

! Lack of user understanding will induce de facto violations of LSP

! Replaceability is crucial
! Whenever any class is referenced by any code in any system,

 any future or existing subclasses of that class must be 100% replaceable

! Because, sooner or later, someone will substitute a subclass;
" it’s almost inevitable.

Good Object-Oriented Design

Dr. Radu Marinescu 98

LSP and Replaceability

! Any code which can legally call another class’s methods
! must be able to substitute any subclass of that class without modification:

Client
Service Class

Client

Service Class

Unexpected
Subclass

Good Object-Oriented Design

Dr. Radu Marinescu 99

LSP Related Heuristic (2)

! NOP = a method that does nothing

! Solution 1: Inverse Inheritance Relation
! if the initial base-class has only additional behavior

" e.g. Dog - DogNoWag

! Solution 2: Extract Common Base-Class
! if both initial and derived classes have different behaviors

! for Penguins ! Birds, FlyingBirds, Penguins

! Classes with bad state
! e.g. stupid or paralyzed dogs...

 It is illegal for a derived class, to override
a base-class method with a NOP method

Good Object-Oriented Design

Dr. Radu Marinescu

Single Responsibility Principle (SRP)

! A Responsibility is a reasons to change

! Single Responsibility = increased cohesion

! Not following results in needless dependencies
! More reasons to change.

! Rigidity, Immobility

! Can be tricky to get granularity right

100

A class should have only one reason to change!
R. Martin

Good Object-Oriented Design

Dr. Radu Marinescu

When SRP is violated...

! The Rectangle has 2 responsibilities ... due to the various clients

101

! The bad part: ComputationalGeometryApplication depends now on

GUI!

Good Object-Oriented Design

Dr. Radu Marinescu

When SRP is considered...

102

could be either aggregation or inheritance!

Good Object-Oriented Design

Dr. Radu Marinescu

Common Violation of SRP

! mix business rules and persistence control
! should almost never be mixed

! business rules change often ; persistency rules change sometimes but always for
different reasons

103

Good Object-Oriented Design

Dr. Radu Marinescu 104

Clients should depend on slim interfaces...

Good Object-Oriented Design

Dr. Radu Marinescu 105

Interface Segregation Principle

! Many client-specific interfaces are better than one general purpose

interface

! Consequence:
! impact of changes to one interface aren’t as big if interface is smaller

! interface pollution

Clients should not be forced to depend

upon interfaces that they do not use.
R. Martin, 1996

Good Object-Oriented Design

Dr. Radu Marinescu 106

ISP Example

! Door and Timed Door
! lock() , unlock() , isOpen()

! TimedDoor beeps when door is open
for too long

clas Timer {
 public void register(int timeout, TimerClient cl);
 // …
};

interface TimerClient { void OnTimeOut()=0; }

Timer TimerClient
0..*

Door

TimedDoor

Naïve!

public class Timer {
 public void Register(int timeout,
 int timeOutId,
 TimerClient client)
 {/*code*/}
}

public interface TimerClient
{
 void TimeOut(int timeOutID);
}

Good Object-Oriented Design

Dr. Radu Marinescu

What Can Happen?

! What if...
....I close the door before the timeout and then open it again ? :))

-> we need to identify the timeout request -> change affects the

interface of TimerClient -> all clients get affected!

107

Why should a Door subclass,

that is not related to timing be

affected by this change?!!

Good Object-Oriented Design

Dr. Radu Marinescu 108

Separation through Multiple Interfaces

! … in fact implementation of multiple interfaces

Good Object-Oriented Design

Dr. Radu Marinescu 109

Separation Through Delegation

Timer TimerClient
0..*

DoorTimer
Adapter

Door

TimedDoor

<<creates>>

+onTimeOut()

+reactOnTimeOut()

onTimeOut(...) {

 theTimedDoor.reactOnTimeOut(...);

}

theTimedDoor

Good Object-Oriented Design

Dr. Radu Marinescu 110

Rela!ii intre Clase si Obiecte

Good Object-Oriented Design

Dr. Radu Marinescu 111

Tipuri de Relatii

! Relatia USES

!Relatia ASSOCIATE

!Relatia CONTAINS

!Relatia IS (de mostenire)

Good Object-Oriented Design

Dr. Radu Marinescu 112

Implementare Relatiei USES

1. Continere

2. Referinta

3. Mapare

4. Parametrii

5. Prin Constructie (Locala)

6. Prin Date Globale

Good Object-Oriented Design

Dr. Radu Marinescu 113

Prin Continere

Prin Referinta

! “Oracolul din Delfi” ii spune cine e obietul cu care sa comunice

Good Object-Oriented Design

Dr. Radu Marinescu 114

Prin Parametrii

Prin Mapper

Good Object-Oriented Design

Dr. Radu Marinescu 115

Prin Date Globale

Prin Constructie

Good Object-Oriented Design

Dr. Radu Marinescu 116

Ce conteaza cand e vorba de cuplaj?

! In care din urmatoarele situatii cuplajul este mai redus?

FANOUT = Cate Metode X

 Cate Apeluri

Nr. Apelanti!

Nr. Apelati!

Good Object-Oriented Design

Dr. Radu Marinescu 117

Euristici Legate De Cuplaj

Reduceti numarul claselor de care depinde fiecare clasa!

Reduceti numarul de metode distincte apelate dintr-o clasa data!

Reduceti numarul de apeluri catre alte clase pentru o clasa data!

Reduceti valoare FANOUT pentru o clasa data!

Good Object-Oriented Design

Dr. Radu Marinescu 118

Relatia de CONTINERE (CONTAINMENT)

! ... altfel relatia de continere e falsa!
! fie clasa care contine nu are nevoie de respectivele date

! fie ele sunt plasate gresit...atunci cand sunt folosite mai mult de catre o alta
clasa.

Daca o clasa, contine obiecte ale altei clase, atunci clasa care
contine obiectele trebuie sa foloseasca acele obiecte. Ea si numai ea!

Good Object-Oriented Design

Dr. Radu Marinescu 119

Care clasa ai prefera sa o utilizezi ?

A

B

Raspunsul Corect:

 NU CONTEAZA!

Good Object-Oriented Design

Dr. Radu Marinescu 120

Care clasa ai prefera sa o implementezi ?

A

B

Majoritate metodelor unei clase ar trebui sa foloseasca

majoritatea datelor clasei in majoritatea timpului

! In general ar fi bine ca o clasa sa nu contina mai mult de 6 obiecte
ca atribute

! Ce se intampla daca cateva metode folosesc majoritatea datelor in
majoritatea timpului ? ;-)

Good Object-Oriented Design

Dr. Radu Marinescu 121

Forma ideala a ierarhiilor de continere

! ... pentru ca nu mai accesam datele partilor ci identificam servicii ale

acestora

! castigam flexibilitatea # modalitati multiple de reutilizare

Organizati relatii de continere in ierarhii adanci si inguste

Good Object-Oriented Design

Dr. Radu Marinescu 122

Constrangeri Semantice

! Ce ne facem daca avem limitari in privinta compunerii felurilor de

mancare? $

! Solutia I
! nu las sa se construiasca obiectul

! constrangerea semantica este plasata in constructorul obiectul care agrega

! Solutia II
! constructorul permitea construirea unor obiecte “ilegale”

! testarea se face la nivelul metodelor care folosesc obiectul

... o sa vedeti voi cand vorbim despre Composite ;-)

Good Object-Oriented Design

Dr. Radu Marinescu 123

Shy Code

! Don't reveal yourself to others
! “Information Hiding” modularization rule

! Don't interact with too many people
! “Few Interfaces” modularization rule

! Spy, dissidents and revolutionaries
! eliminating interactions protects anyone

! The General contractor example
! he must manage subcontractors

Good Object-Oriented Design

Dr. Radu Marinescu 124

Law of Demeter

! Weak Form
Inside of a method M of a class C, data can be accessed in and

messages can be sent to only the following objects:

! this and super

! data members of class C

! parameters of the method M

! object created within M
" by calling directly a constructor

" by calling a method that creates the object

! global variables

! Strong Form:
In addition to the Weak Form, you are not allowed to access directly

inherited members

Good Object-Oriented Design

Dr. Radu Marinescu 125

directly held component objects

created objects

passed parameters

itself

Demeter’s Law on Exampleclass Demeter {

private:

 A *a;

public:

 // …

 void example(B& b);

void Demeter::example(B& b) {

 C *c;

 c = func();

 b.invert();

 a = new A();

 a->setActive();

 c->print();

}

Any methods of an object

should call only methods

belonging to:

class Course {
 Instructor boring = new Instructor();
 int pay = 5;

 public Instructor getInstructor() { return boring; }
 public Instructor getNewInstructor() {return new Instructor(); }
 public int getPay() {return pay; }
}

class C {
 Course test = new Course();

 public void badM() { test.getInstructor().fired(); }

 public void goodM() { test.getNewInstructor().hired(); }

 public int goodOrBadM?() { return test.getpay() + 10; }
 }
}

Good Object-Oriented Design

Dr. Radu Marinescu 126

Example of LoD Violation

class Course {
 Instructor boring = new Instructor();
 int pay = 5;

 public Instructor fireInstructor() { boring.fired(); }

 public Instructor getNewInstructor() { return new Instructor();}
 public int getPay() { return pay ; }
}

class C {
 Course test = new Course();

 public void reformedBadM() { test.fireInstructor(); }

 public void goodM() { test.getNewInstructor().hired(); }

 public int goodOrBadM() { return test.getpay() + 10; }
}

Good Object-Oriented Design

Dr. Radu Marinescu

How to eliminate the LoD violation?

127

Good Object-Oriented Design

Dr. Radu Marinescu 128

The Law of Demeter for Children ;-)

! You can play with yourself.

! You can play with your own toys, but you can't take them apart

! You can play with toys that were given to you.

! You can play with toys you've made yourself.

Good Object-Oriented Design

Dr. Radu Marinescu 129

Benefits of Demeter’s Law

! Coupling Control
! reduces data coupling

! Information hiding
! prevents from retrieving subparts of an object

! Information restriction
! restricts the use of methods that provide information

! Few Interfaces
! restricts the classes that can be used in a method

! Explicit Interfaces

Good Object-Oriented Design

Dr. Radu Marinescu 130

Acceptable LoD Violations

! If optimization requires violation
! Speed or memory restrictions

! If module accessed is a fully stabilized “Black Box”
! No changes to interface can reasonably be expected due to extensive testing,

usage, etc.

! Otherwise, do not violate this law!!
! Long-term costs will be very prohibitive

