Secuity System

You are building a secuirty monitoring system for a building.

It is your job to implement the feature that monitors the acces points – doors.

Your feature specifications:

The acces to different sections of the buiding is restercted based on a person’s credentials.

A normal door can be open and closed by anyone. But the system will know the state of the door.

For a lower secuity door a person has a key card – when he enters the key card the card is scaned. If the the person has the write credentions the door will open. After the person enters he must push a button to tell the door to close. If the credentials are wrong an alarm sounds and a message with the ids for both the person and door are displayed.

How credentials are verified:
The keycard contains a code. Ex. 56B7- 889A - 5568

The door has a partial code that acts like a pattern. If the keycode matches the pattern acces is granted. Ex. xxBx – x8xx - xxxx
Higher security doors also have a timer. If the door is not closed before a given time passes the door automaticaly closes, and a message is logged.
Implementation details:

So that all the parts of the security sistem are syncronized a universal Timer class has already been implemented. You MUST use this class. (For the moment the implementation is unavailble so use a stub for your tests).
public class Timer

{

 public void Register(int timeout, TimerClient client)

 {/*code*/}

}

public interface TimerClient

{

 void TimeOut();

}

When an object wishes to be informed about a timeout, it calls the Register function of the Timer. The arguments of this function are the time of the timeout and a reference to a TimerClient object whose TimeOut function will be called when the timeout expires.

Principles of Object-Oriented Design
Open-Closed Principle (OCP):

Software entities should be open for extension, but closed for modification
Dependency Inversion Principle
I. High-level modules should not depend on low-level modules. Both should depend on abstractions.

II. Abstractions should not depend on details. Details should depend on abstractions

Liskov Substitution Principle
Inheritance should ensure that any property proved about supertype objects also holds for subtype objects
Interface Segregation Principle
Clients should not be forced to depend upon interfaces that they do not use.

