
Renaming a Class Field 

Class Cell is an abstract superclass with many subclasses. You can see this by selecting that class or file, 

and hitting F4 to see the class hierarchy. You can also see in the Outline view that Cell has a field named 

owner. 

Use the Rename refactor operation to change the name of this to theOwner. Select all the options in that 

menu (to change references, comments, and getters and setters). Use Preview to see what would change. 

Did this really change everything? Use the Search->Java to find all references to a field named owner and 

see if anything was left unchanged. Then search for all references to a field named theOwner to verify all 

was updated. 

But note that in Cell.setTheOwner (was SetOwner) the parameter variable is still named owner (not 
theOwner). Your refactoring just changed the name field defined in Cell; there may be other variables 

(parameters, local variables) with this same name. Global search-and-replace would have changed every 

string, but Eclipse's refactoring support knows the structure of your Java program and only does what you 

want. 

BTW, you can undo all of these changes by choosing Undo from the Refactor menu! You can always undo 
your previous refactorings in Eclipse. (The menu shows the most recent one, but if you un-do that one you 

can then un-do the previous one.) 

Changing a Class Hierarchy 

Staying in abstract class Cell, note that there is a field named available. Choose the PushDown refactoring 

to move this from the superclass to all of its subclasses. Wait -- are there member functions that should be 

pushed-down too? Think about this carefully before carrying out the refactoring. Also, use Preview to see 

what would be changed. 

After carrying this out, look at some of the subclasses (seen from the Hierarchy view you got by hitting F4) 

and see if the field has been moved into the subclasses. 

But wait! Pushing down this method caused some errors to occur! See the red error-indicator icon next to 

GameMaster.java and Player.java? Or, do you see the list of errors in the Problem view? If you click on 

each error in the Problem view, you'll see we're trying to call setAvailable() or getAvailable() on a reference 

to an object of type Cell (the abstract class). 

So this push-down wasn't a good idea (though it showed you how this can work). We could fix our mistake 

by choosing Refactor -> Undo. But before you do this, let's demonstrate the power of Eclipse's refactoring 

by doing this in a more "manual" way. 

Let's un-do this by using Refactor -> Pull Up, the logical opposite of Push Down. Choose one of the 

subclasses of Cell, say, Card Cell. Select available and run the Pull Up refactoring. But, you might see 
there could be a problem with fixing things this way: you don't want to have to run Pull Up for all the 

subclasses of Cell! Go ahead and proceed, and be sure to choose the methods to pull-up that you pushed-

down earlier. 

Ah ha! Eclipse recognizes this problem, and the window lets you say if you want the identically-named 
fields and methods in other subclasses of Cell to also be pulled-up. To select them all, click the check-box 

by Cell once to clear everying, and then again to select everything. 

The changes you made here in the class hierarchy demonstrate how smart Eclipse can be about your Java 

programs and what kinds of large-scale changes it can make throughout your files. Doing these sorts of 

things by hand would be tedious, time-consuming, and error prone. (BTW, are you wondering if Eclipse just 

trashed this code? Run the unit tests again.) 

 

Extracting an Interface 

Abstract class Cell has a field called owner because players can own squares on a Monopoly board. What 

if players could own other things? Let's say this made sense, and we decided to make the notion of owning 

something an interface. 

Choose Cell and then bring up the Extract Interface refactoring operation. Name the new interface 

IOwnable. What members of Cell should move into this interface? 

Carry out this refactoring and make sure you understand how the code changed. What files were updated? 

What new files were created? You might find using the Preview option helpful here. 

Extracting a Method from Code 

A useful refactoring is to take a chunk of code and turn it into a method. Then it can be reused elsewhere. 

You can use this to remove instances of duplicated code too. In our current project, there may not be a 

good place to show that this is useful, but let's see how it works anyway. 

In the class PropertyCell there is a method getRent(). Let's take the first for-loop and make it a separate 

method. Highlight the loop itself and then choose Extract Mehod from the refactor menu. You might name 
the new function something like calcMonopoliesRent(). Look at the menu that comes up and make sure you 

understand what the options are and why it's asking for these things. Wait -- don't carry out the extraction 

yet. 

Instead, cancel and go back and highlight the loop and the declaration of the String array right before it. 
Now do an Extract Method on that. Why is the signature of the function different that previously? Make sure 

you see what's happening here. 

Go ahead and carry out one of these two refactorings. Examine the code in this Java file to make sure you 

see what happened. 

Creating a Local Variable from Repeated Code 

The Extract Local Variable refactoring allows you take an expression that might be repeated and create a 

local variable from that expresssion. Let's try this. 

Go toe GameBoard.addCell(PropertyCell). See that the expression cell.getColorGroup() is used twice? 

Highlight one of those usages and then Extract Local Variable from the refactoring menu. Note that Eclipse 

suggests names for the local variable. 

Explore what options are offered, and carry out the refactoring and make sure you understand what has 

changed. 

Is it always OK to do this to a function call like this? Could it affect the correctness of the program? 

Changing a Method's Signature 

As the article on refactoring with Eclipse notes, you can change the signature of a method but you must 
think carefully about doing this. And Eclipse will certainly not be able to make all the logical changes that 

are required; you'll have to do more work after the refactoring operation is completed. 

But let's see how this would work. In class Cell, select the abstract playAction() method, and use the 

refactoring Change Method Signature to: 

0. change the return type from void to boolean; 
0. add a new parameter called msg of type String. 

Use Preview to see where and how things are changing. Why are things changing in other classes besides 

Cell? How does this affect the definitions of any other classes besides Cell? 


