
Foundations of Software Engineering

Dr. Radu Marinescu

Software Design

Foundations of Software Engineering

Dr. Radu Marinescu !2

Goals of Design

! Decompose system into components
!i.e. identify the software architecture
!

! Describe component functionality
! informally or formally
!

! Determine relationships between components
!identify component dependencies
!determine inter-component communication mechanisms
!

! Specify component interfaces
!Interfaces should be well defined

" facilitates component testing and team communication

Foundations of Software Engineering

Dr. Radu Marinescu !3

Decomposition

1. Select a piece of the problem
! initially, the whole problem

2. Determine the components in this piece using a design paradigm
! e.g. functional, structured, object-oriented, generic, etc.

3. Describe the components interactions
!

4. Repeat steps 1 through 3 until some termination criteria is met
! e.g., customer is satisfied, run out of money, etc. ;-)

WHY ?
 Handle complexity by splitting large problems into smaller problems,

i.e. "divide and conquer" methodology

Foundations of Software Engineering

Dr. Radu Marinescu !4

A Component Is ...

! ... a software entity encapsulating the representation of an abstraction
!

! ... a vehicle for hiding at least one design decision
!

! ... a "work" assignment
!for a programmer or group of programmers

!
! ... a unit of code that

!has one (or more) name(s)
!has identifiable boundaries
!can be (re-)used by other components
!encapsulates data
!hides unnecessary details
!can be separately compiled

Foundations of Software Engineering

Dr. Radu Marinescu !5

What is Good Design?
! The temptation of "correct design"

!insurance against "design catastrophes"
!design methods that guarantee the "correct design"

! Need of criteria for evaluating a design
! Need of principles and rules for creating good designs

A good design is one that balances trade-offs to minimize the total cost of the
system over its entire lifetime

[…]
a matter of avoiding those characteristics that lead to bad consequences.

Coad & Yourdon

There is no correct design! You must decide!

Foundations of Software Engineering

Dr. Radu Marinescu !6

Modularity

! A modular system is one that's structured into identifiable
abstractions called components
!Components should possess well-specified abstract interfaces
!Components should have high cohesion and low coupling

A software construction method is modular
if it helps designers produce software systems

made of autonomous elements
connected by a coherent, simple structure.

B. Meyer

Foundations of Software Engineering

Dr. Radu Marinescu !7

Meyer's Five Criteria for Evaluating Modularity

! Decomposability
!Are larger components decomposed into smaller components?

! Composability
!Are larger components composed from smaller components?

! Understandability
!Are components separately understandable?

! Continuity
!Do small changes to the specification affect a localized and limited number

of components?

! Protection
!Are the effects of run-time abnormalities confined to a small number of

related components?

Foundations of Software Engineering

Dr. Radu Marinescu !8

1. Decomposability

! Decompose problem into smaller sub-problems that can be
solved separately
!Goal: Division of Labor

" keep dependencies explicit and minimal
!Example: Top-Down Design
!Counter-example: Initialization Module

" initialize everything for everybody

Foundations of Software Engineering

Dr. Radu Marinescu !9

2. Composability

! Freely combine modules to produce new systems
!Reusability in different environments → components
!Example: Math libraries; UNIX command & pipes

Foundations of Software Engineering

Dr. Radu Marinescu !10

3. Understandability

! Individual modules understandable by human reader
!Counter-example: Sequential Dependencies (A | B | C)

" contextual significance of modules

Foundations of Software Engineering

Dr. Radu Marinescu !11

4. Continuity

! Small change in requirements results in:
!changes in only a few modules does not affect the architecture
!Example: Symbolic Constants
!Counter-Example: non-uniform access

Foundations of Software Engineering

Dr. Radu Marinescu !12

5. Protection

! Effects of an abnormal run-time condition is confined to a
few modules
!Example: Validating input at source
!Counter-example: Undisciplined exceptions

Foundations of Software Engineering

Dr. Radu Marinescu !13

Meyer's Five Rules of Modularity

! Direct Mapping
!consistent relation between problem model and solution structure

! Few Interfaces
!Every component should communicate with as few others as possible

! Small Interfaces
!If any two components communicate at all, they should exchange as little

information as possible

! Explicit Interfaces
!Whenever two components A and B communicate, this must be obvious

from the text of A or B or both

! Information Hiding

Foundations of Software Engineering

Dr. Radu Marinescu !14

1. Direct Mapping

! Keep the structure of the solution compatible with the structure
of the modeled problem domain
!clear mapping (correspondence) between the two

!
Impact on:
! Continuity

!easier to assess and limit the impact of change
!

! Decomposability
!decomposition in the problem domain model as a good starting point for the

decomposition of the software

Foundations of Software Engineering

Dr. Radu Marinescu !15

2. Few Interfaces

! Every module should communicate with as few others as
possible
!rather n-1 than n(n-1)/ 2
!Continuity, Protection, Understandability, Composability

anarchiccentralized distributed

Foundations of Software Engineering

Dr. Radu Marinescu !16

3. Small Interfaces

! If two modules communicate, they should exchange as little
information as possible
!limited "bandwidth" of communication
!Continuity and Protection

4. Explicit Interfaces

! Whenever two modules A and B communicate, this must be
obvious from the text of A or B or both.
!Decomposability and Composability
!Continuity, Understandability

Foundations of Software Engineering

Dr. Radu Marinescu !17

4. Explicit Interfaces (2)

! The issue of indirect coupling
!data sharing

Module A Module B

Data Item
x

modifies
accesses

Foundations of Software Engineering

Dr. Radu Marinescu !18

Rule 2 + Rule 3 + Rule 4 Rephrased

! Few Interfaces: “Don’t talk to many!”
!

! Small Interfaces: “Don’t talk a lot!”
!

! Explicit Interfaces: “Talk loud and in public! Don’t whisper!”

Foundations of Software Engineering

Dr. Radu Marinescu !19

5. Information Hiding

Motivation: design decisions that are subject to change should
be hidden behind abstract interfaces, i.e. components
!Components should communicate only through well-defined interfaces
!Each component is specified by as little information as possible

!
! Continuity: If internal details change, client components should

be minimally affected
!not even recompiling or linking

Foundations of Software Engineering

Dr. Radu Marinescu !20

Abstraction vs. Information Hiding

Information hiding is one means to enhance abstraction!

Foundations of Software Engineering

Dr. Radu Marinescu

Software Architecture

Foundations of Software Engineering

Dr. Radu Marinescu

I define architecture as a word we use
when we want to talk about design

but want to puff it up to make it sound important

Fowler’s Ironic Definition of Architecture...

!22

M.Fowler – “Who Needs an Architect”, 2003

Foundations of Software Engineering

Dr. Radu Marinescu !23

Definition of Software Architecture

"Software Architecture involves the description of
!elements from which systems are built,
!interactions among those elements,
!patterns that guide their composition and
!constraints on these patterns“
!

!
Shaw, Garlan – “Software Architecture”, 1996

Foundations of Software Engineering

Dr. Radu Marinescu !24

Definition of Software Architecture (2)

“The software architecture of a program or computing system is the structure (or structures)
of the system, which comprise
!software components,
!the externally visible properties of those components and
!the relationships among them"

Bass,Clements, Kazman – “Software Architecture in Practice”,
1998

Foundations of Software Engineering

Dr. Radu Marinescu !25

The Place of Software Architecture

Foundations of Software Engineering

Dr. Radu Marinescu

More Definitions...
! In most successful software projects, the expert developers working on that

project have a shared understanding of the system design. This shared
understanding is called ‘architecture.’ This understanding includes how the
system is divided into components and how the components interact through
interfaces. These components are usually composed of smaller components,
but the architecture only includes the components and interfaces that are
understood by all the developers. [R.Johnson, 2003]
!

! Architecture is about the important stuff. Whatever that is. [R.Johnson, 2003]
!

! Architecture is the decisions that you wish you could get right early in a
project, but that you are not necessarily more likely to get them right than any
other. [R.Johnson, 2003]
!

! ...things that people perceive as hard to change [M.Fowler, 2003]

!26

Foundations of Software Engineering

Dr. Radu Marinescu !27

Non-Functional Requirements

! Performance
!Small number of subsystems # large-grained components
!Reduce communication

!
! Security

!Layered structure
!Most critical layer in the inside
!High-level of security validation

!
!

! Maintainability
!Easy to change # Fine-grained, self-contained components
!Producers of data separated from consumers
!Avoid shared data structures

Foundations of Software Engineering

Dr. Radu Marinescu

Some Architectural Styles...

Foundations of Software Engineering

Dr. Radu Marinescu !29

Repositories. An Example

Program
Editor

Design
Editor Code

Generator

Report
Generator

Design
Analyzer

Project
Repository

Foundations of Software Engineering

Dr. Radu Marinescu !30

Repositories – Blackboard

! Knowledge Sources (ks)
! knowledge partitioned in independent
computations
! respond to changes in blackboard

! Blackboard
! entire state of problem solution
! means of interaction among “ks”

 to find the solution
! Control

! in model $ “ks” self-activated by
 changes in the blackboard

Foundations of Software Engineering

Dr. Radu Marinescu !31

Repositories – Summary

!The common data-model is a compromise among subsystems

!Expensive translations to a new model

!Repository forces a centralized policy on all subsystems
! e.g. backup, security, access control

% Efficient way to share large amounts of data

% Data producers and consumers are totally independent

% Subsystems don’t have to care about auxiliary responsibilities
! e.g. backup, security, recovery from error

Foundations of Software Engineering

Dr. Radu Marinescu !32

Layered Architecture (a.k.a. Abstract Machine)

Foundations of Software Engineering

Dr. Radu Marinescu !33

Layered Architecture – Summary

% Changeable and portable architecture

% Suitable for incremental development
! Provide services as soon as a layer is implemented

% Support reuse

!

!Hard to achieve such a rigorous structuring
! Hard to find the proper levels of abstraction

!Reduces performance by increased communication

Foundations of Software Engineering

Dr. Radu Marinescu !34

Client-Server. An Example

Client 1 Client 2 Client 3 Client 4

Wide-bandwidth network

Video
Server

Picture
Server

Hypertext
Server

Foundations of Software Engineering

Dr. Radu Marinescu !35

Client-Server – Summary
% Architecture is distributed

% Easy to add and integrate new servers
% System can be reconfigured dynamically

!
% Servers are not aware of clients

% Neither identity nor number
!

% Each server can organize its own data-model
% better then the centralized data-model in Repository

!Performance problems if large amounts of data are exchanged

!Hard to anticipate problems with integrating data from a new server

Foundations of Software Engineering

Dr. Radu Marinescu !36

Pipes and Filters

!Filter
! incrementally transform some flow of data at inputs to data at outputs
! share no state with other filters
! don’t depend on the upstream and downstream filters
!

!Pipe
! Move data from a filter output to a filter input
! form graphs of data transmission

Foundations of Software Engineering

Dr. Radu Marinescu !37

Pipes and Filters – Summary
% Understand behavior as a composition of the behavior of

individual filters
% Support for filter reuse
% Systems are easy to maintain and enhance

% By changing or adding new filters

!Not good for interactive applications
!Filters need a common format for data transfer
!Each filter must parse and un-parse the data stream $ overhead

