

Foundations	of	Software	Engineer	ing
-------------	----	----------	----------	-----

Class-Responsibility-Collaborator (CRC) Modeling

- Technique to identify candidate classes and indicate their responsibilities and collaborators
 - K.Beck&W.Cunningham (1989), R.Wirfs-Brock(1990,2002)
- Uses simple index cards

Class		Class name: Class type: (e.g., device, property, role, event)		
		responsibilities:	collaborations:	
				_
		L		

Dr. Radu Marinescu

Foundations of Software Engineering

Rules for Identifying Classes

- 1. Retained Information
 - information about object must be remembered for the system to function
- 2. Needed Services
 - · have a set of operations that change the value of its attributes
- 3. Multiple Attributes
 - focus on "major" information
 - object with single attribute is ok during design, but during analysis is just an attribute of another object

4. Essential Requirements objects

• entities that produce or consume information of the system, in any solution

Foundations of Software Engineering

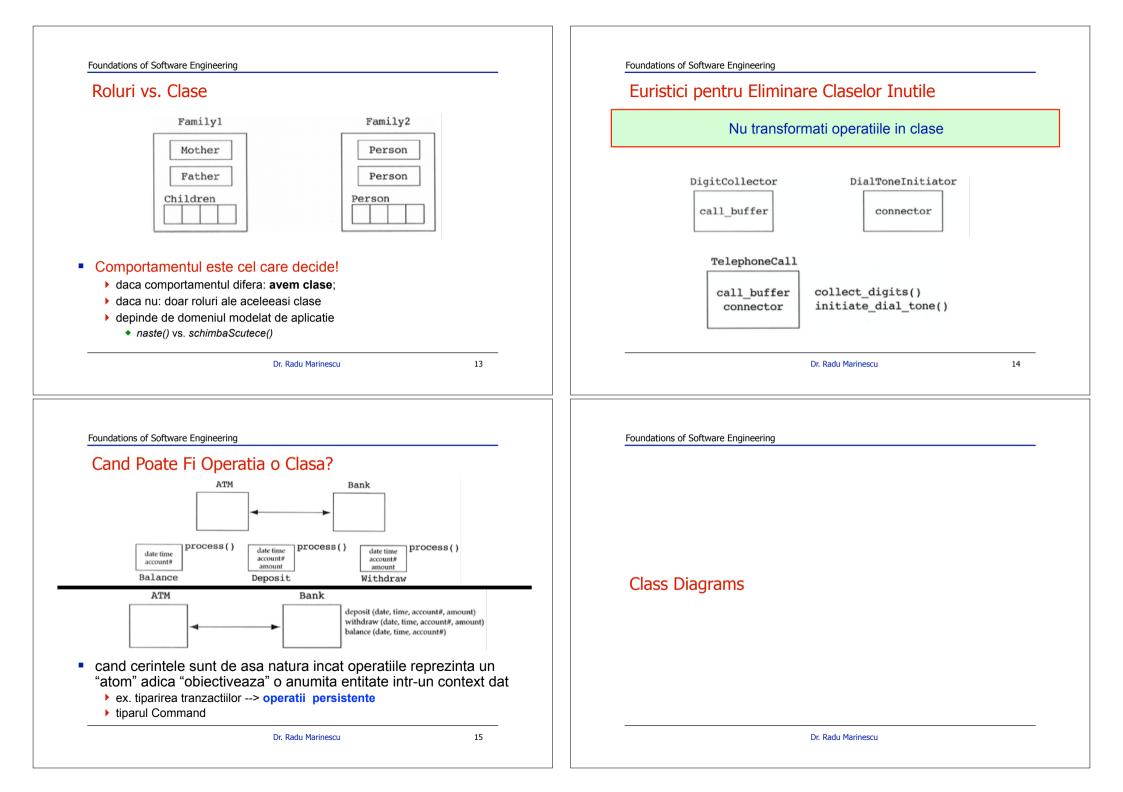
CRC Cards Session Scenario

- Use-Case driven
 a use-case is the token
- Goal: be able to go through the whole use-case description by using the responsibilities written on the CRC cards
 - …and of course following the Collaborator links

Dr. Radu Marinescu

Foundations of Software Engineering

Identifying Responsibilities


Class name:		
Class type: (e.g., device, property	role, event)	
Class characteristic: (e.g., tangibl	, atomic, concurrent)	
responsibilities:	collabo	rations:

6

- attributes and operations of an identified class
- Guidelines of Wirfs-Brock:
 - 1. System intelligence should be evenly distributed
 - 2. Information about one thing should be localized within a single class
 - 3. Information and its related behavior should stay in the same class
 - 4. Responsibilities should be shared among related classes

7

Foundations of Software Engineering Foundations of Software Engineering Operations = Verbs Collaborations Class type: (e.g., device, property, role, event) s characteristic: (e.g., tangible, atomi Computation Manipulation of data • e.g., add, delete, modify attributes Querv about the state of an object Class can fulfill responsibilities by: Monitor an object 1. using its own operations to manipulate its own attributes for the occurrence of a controlling event 2. collaborating with others Three types of generic relationships: Has knowledge about the state of class and its associations 3. has-knowledge-of (association) 4. is-part-of (aggregation) 5. composition Dr. Radu Marinescu 9 Dr. Radu Marinescu 10 Foundations of Software Engineering Foundations of Software Engineering Problema Proliferarii Claselor [Riel96] Spaghetti Code vs. Ravioli Code Cum se manifesta "Codul Ravioli" Heuristics for Object-Oriented Modeling • Vreau sa adaug o facilitate noua in sistem. Care 23 de clase din cele 4.200 de clase trebuie sa le modific? Fiti retinuti in a modela ca si clase entitati din afara sistemului de implementat! Exemplu: Clientul unui Bancomat trimite un mesaj bancomatului Clase sunt acelea care PRIMESC MESAJE (sunt apelate) nu cele care TRANSMIT MESAJE (apeleaza)! 12 Dr. Radu Marinescu 11 Dr. Radu Marinescu

Class Diagrams

TariffSchedule			Trip
Enumeration getZones()	*	*	zone:Zone price:Price
Price getPrice(Zone)			

- Class diagrams represent the structure of the system.
- Class diagrams are used
 - during requirements analysis to model problem domain concepts
 - during system design to model subsystems and interfaces
 - during object design to model classes.

Dr. Radu Marinescu

17

Foundations of Software Engineering

Instances

tari	ff_1974:TarifSchedule
{`1' {`2'	<pre>2price = { 20}, 40}, 60}</pre>

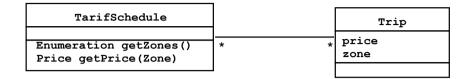
- An instance represents a phenomenon.
- The name of an instance is <u>underlined</u> and can contain the class of the instance.
- The attributes are represented with their values.

Second strain strain

- contians state (attributes) and behavior (operations).
- Each attribute has a type.
- Each operation has a signature.
- The class name is the only mandatory information.

Dr. Radu Marinescu

Good Object-Oriented Design


Rene Magritte, Treachery of Images - 1929

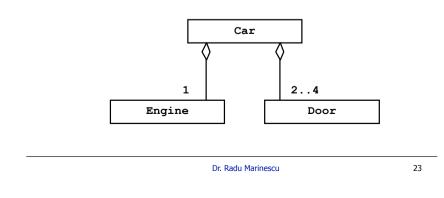
Dr. Radu Marinescu

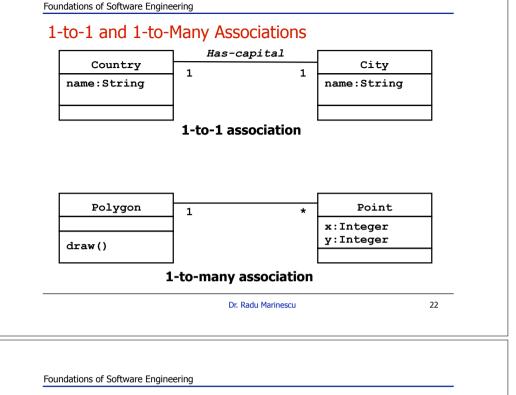
18

Dr. Radu Marinescu

Associations

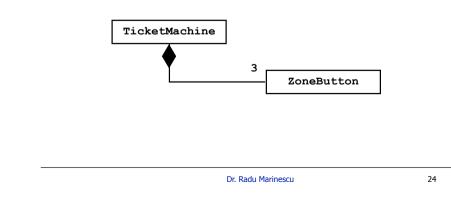
- Associations denote relationships between classes.
- The multiplicity of an association end denotes how many objects the source object can legitimately reference.

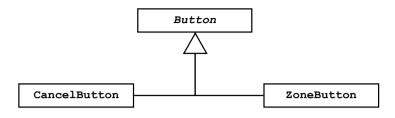

21


Dr. Radu Marinescu

Foundations of Software Engineering

Aggregation


- An aggregation is a special case of association denoting a "consists of" (HAS-A) hierarchy.
- The aggregate is the parent class, the components are the children class.



Composition

 A solid diamond denote composition, a strong form of aggregation where components cannot exist without the aggregate.

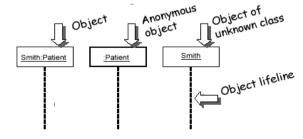
Generalization

- Generalization relationships denote inheritance between classes.
- The children classes inherit the attributes and operations of the parent class.
- Generalization simplifies the model by eliminating redundancy.

```
Dr. Radu Marinescu
```

Foundations of Software Engineering

UML Sequence Diagrams


- Sequence Diagram: an "interaction diagram" that models a single scenario executing in the system
 - perhaps 2nd most used UML diagram (behind class diagram)
- Participant: an object or entity that acts in the sequence diagram
 - sequence diagram starts with an unattached "found message" arrow
- Message: communication between participant objects
- Axes in a sequence diagram:
 - horizontal: which object/participant is acting
 - vertical: time (down -> forward in time)

<form> Eventetions of Software Engineering

Foundations of Software Engineering

Representing Objects

- squares with object type, optionally preceded by object name and colon
 - write object's name if it clarifies the diagram
 - object's "life line" represented by dashed vert. line

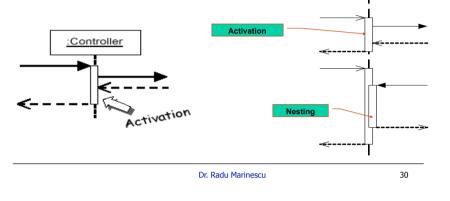
Name syntax: <a>cobjectname>:<classname>

Dr. Radu Marinescu

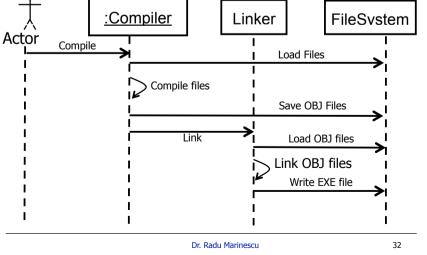
25

Dr. Radu Marinescu

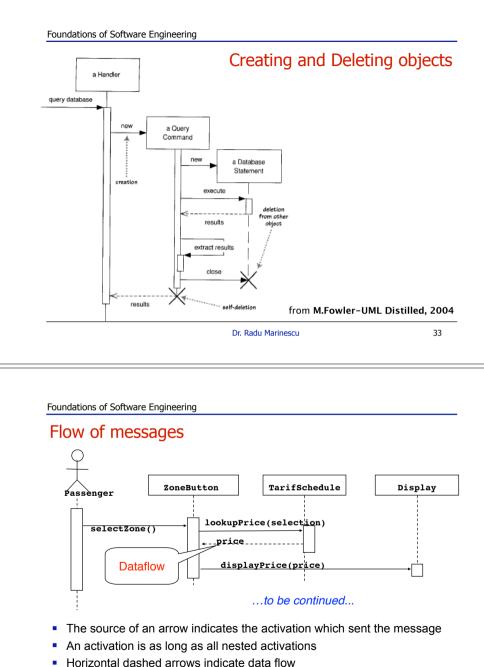
Example 1:


- Building an executable from sources
 - Ioad source files and compile them
 - Ioad resulting object files and link them
 - write executable file

Foundations of Software Engineering

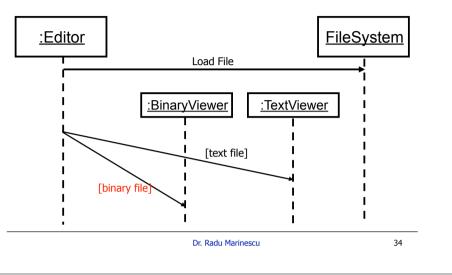

Indicating method calls

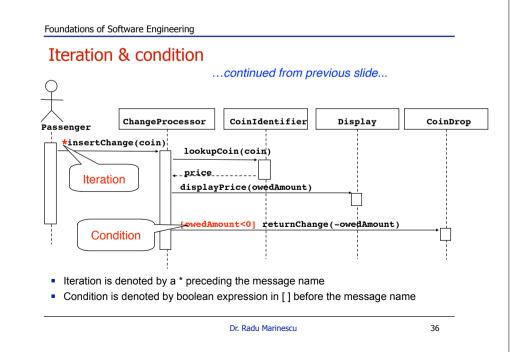
- Activation: shows when object's method is on the stack
 - either that object is running its code, or it is on the stack waiting for another object's method to finish
 - nest to indicate recursion

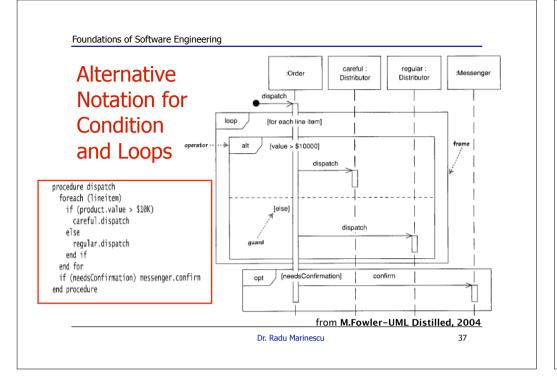

Foundations of Software Engineering

Sequence Diagram – Compilation

Dr. Radu Marinescu


Vertical dashed lines indicate lifelines


Dr. Radu Marinescu


35

Foundations of Software Engineering

Branching Flow: flow goes to different objects [if condition is met]

Sequence Diagram Summary

- UML sequence diagram represent behavior in terms of interactions.
- Useful to find missing objects.
- Time consuming to build but worth the investment.
- Complement the class diagrams (which represent structure).

Dr. Radu Marinescu