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Object-Oriented Analysis and Modeling
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Object-oriented analysis (OOA)

! What are the relevant objects? How do they relate to one 
another?  
!

! How do we specify/model a problem so that we can create 
an effective design? 
!

! OOA aims to model the problem domain, by developing an 
object-oriented (OO) system.
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Elements of the Analysis Model

Use case text &  
diagrams 
Activity diagrams

Scenario-based 
modeling

CRC models 
Class diagrams 

Class-based 
modeling

Data structure diagrams 
Data flow diagrams 
Control-flow diagrams

Flow-oriented 
modeling

State diagrams 
Sequence diagrams

Behavioral 
modeling

Structured AnalysisObject-oriented Analysis
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Overview of 
the OOA 
Process...

Sequence 
Diagrams

Class 
Diagrams
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Class-Responsibility-Collaborator (CRC) Modeling

! Technique to identify candidate classes and indicate their 
responsibilities and collaborators 
! K.Beck&W.Cunningham (1989), R.Wirfs-Brock(1990,2002) 

! Uses simple index cards
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CRC Cards Session Scenario

! Use-Case driven 
! a use-case is the token 

!
! Goal: be able to go through the whole use-case description 

by using the responsibilities written on the CRC cards 
! ...and of course following the Collaborator links
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Rules for Identifying Classes

1. Retained Information 
• information about object must be remembered for the system to function 

2. Needed Services 
• have a set of operations that change the value of its attributes 

3. Multiple Attributes 
• focus on “major” information 
• object with single attribute is ok during design, but during analysis is just 

an attribute of another object 

4. Essential Requirements objects 
• entities that produce or consume information of the system, in any 

solution
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Identifying Responsibilities

! attributes and operations of an identified class 
! Guidelines of Wirfs-Brock: 

1. System intelligence should be evenly distributed 

2. Information about one thing should be localized within a single class  

3. Information and its related behavior should stay in the same class 

4. Responsibilities should be shared among related classes
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Operations = Verbs

! Computation 
! Manipulation of data  

! e.g., add, delete, modify attributes 

! Query  
! about the state of an object 

! Monitor an object  
! for the occurrence of a controlling event 

!
! Has knowledge about the state of class and its associations
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Collaborations

! Class can fulfill responsibilities by: 
1. using its own operations to manipulate its own attributes 
2. collaborating with others 

! Three types of generic relationships: 
3. has-knowledge-of  (association) 
4. is-part-of  (aggregation) 
5. composition 
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Heuristics for Object-Oriented Modeling
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Problema Proliferarii Claselor [Riel96]

! Spaghetti Code vs. Ravioli Code 
!

! Cum se manifesta “Codul Ravioli” 
! Vreau sa adaug o facilitate noua in sistem. Care 23 de clase din cele 4.200 

de clase trebuie sa le modific?

Fiti retinuti in a modela ca si clase 
 entitati din afara sistemului de implementat!

! Exemplu: Clientul unui Bancomat 
! trimite un mesaj bancomatului

Clase sunt acelea care PRIMESC MESAJE (sunt apelate)  
nu cele care TRANSMIT MESAJE (apeleaza)!
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Roluri vs. Clase

! Comportamentul este cel care decide! 
! daca comportamentul difera: avem clase;  
! daca nu: doar roluri ale aceleeasi clase 
! depinde de domeniul modelat de aplicatie 

" naste() vs. schimbaScutece()
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Euristici pentru Eliminare Claselor Inutile

Nu transformati operatiile in clase
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Cand Poate Fi Operatia o Clasa?

! cand cerintele sunt de asa natura incat operatiile reprezinta un 
“atom” adica “obiectiveaza” o anumita entitate intr-un context dat 
! ex. tiparirea tranzactiilor --> operatii  persistente 
! tiparul Command
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Class Diagrams
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Class Diagrams

! Class diagrams represent the structure of the system. 
! Class diagrams are used 

! during requirements analysis to model problem domain concepts 
! during system design to model subsystems and interfaces 
! during object design to model classes.

!
Enumeration getZones() 
Price getPrice(Zone)

TariffSchedule

* *

Trip
zone:Zone 

price:Price
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Classes

! A class represents a concept. 
! contians state (attributes) and behavior (operations). 
! Each attribute has a type. 
! Each operation has a signature. 
! The class name is the only mandatory information.

zone2price 
getZones() 
getPrice()

TariffSchedule

Table zone2price 
Enumeration getZones() 
Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature
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Instances

! An instance represents a phenomenon. 
! The name of an instance is underlined and can contain the class of the 

instance. 
! The attributes are represented with their values.

zone2price = { 
{‘1’, .20},  
{‘2’, .40}, 
{‘3’, .60}}

tariff_1974:TarifSchedule

Good Object-Oriented Design
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Instance vs. Class

Rene Magritte, Treachery of Images - 1929
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Associations

! Associations denote relationships between classes. 
! The multiplicity of an association end denotes how many 

objects the source object can legitimately reference.

!
Enumeration getZones() 
Price getPrice(Zone)

TarifSchedule

* price  
zone

Trip

*
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1-to-1 and 1-to-Many Associations

1-to-1 association

1-to-many association

*

draw()

Polygon

x:Integer 
y:Integer

Point1

Has-capital

name:String

Country

name:String

City
11
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Aggregation

! An aggregation is a special case of association denoting a 
“consists of” (HAS-A) hierarchy. 

! The aggregate is the parent class, the components are the 
children class.

1

Car

Engine Door

2..4

Foundations of Software Engineering

Dr. Radu Marinescu !24

Composition

! A solid diamond denote composition, a strong form of 
aggregation where components cannot exist without the 
aggregate. 

3

TicketMachine

ZoneButton
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Generalization

! Generalization relationships denote inheritance between classes. 
! The children classes inherit the attributes and operations of the 

parent class. 
! Generalization simplifies the model by eliminating redundancy.

Button

ZoneButtonCancelButton
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Sequence Diagrams
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UML Sequence Diagrams

! Sequence Diagram: an "interaction diagram" that models a 
single scenario executing in the system 
! perhaps 2nd most used UML diagram (behind class diagram) 

!
! Participant: an object or entity that acts in the sequence 

diagram 
! sequence diagram starts with an unattached "found message" arrow 

! Message: communication between participant objects 
! Axes in a sequence diagram: 

! horizontal: which object/participant is acting 
! vertical: time (down -> forward in time)
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Representing Objects

! squares with object type, optionally preceded by object 
name and colon 
! write object's name if it clarifies the diagram 
! object's "life line" represented by dashed vert. line
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! message (method call) indicated by horizontal arrow to 
other object 
! write message name and arguments above arrow 
!
!
!
!
!

! dashed arrow back indicates return 
! different arrowheads for normal / concurrent (asynchronous) 

methods

Messages between objects
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! Activation: shows when object's method is on the stack 
! either that object is running its code, or it is on the stack waiting for 

another object's method to finish 
! nest to indicate recursion
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Indicating method calls

Activation

Nesting
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Example 1:

! Building an executable from sources 
! load source files and compile them 
! load resulting object files and link them 
! write executable file
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Sequence Diagram – Compilation

:Compiler Linker
Actor Compile

FileSystem

Load Files

Save OBJ Files

Compile files

Link Load OBJ files

Link OBJ files
Write EXE file
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Creating and Deleting objects

from M.Fowler-UML Distilled, 2004
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Branching Flow: flow goes to different objects              
[if condition is met]

:Editor FileSystem
Load File

:BinaryViewer :TextViewer

[text file]

[binary file]
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Flow of messages

! The source of an arrow indicates the activation which sent the message 
! An activation is as long as all nested activations 
! Horizontal dashed arrows indicate data flow 
! Vertical dashed lines indicate lifelines

selectZone()

Passenger
ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow

…to be continued...
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Iteration & condition

! Iteration is denoted by a * preceding the message name 
! Condition is denoted by boolean expression in [ ] before the message name

…continued from previous slide...

Passenger
ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

*
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from M.Fowler-UML Distilled, 2004

Alternative 
Notation for 
Condition 
and Loops
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Sequence Diagram Summary

! UML sequence diagram represent behavior in terms of 
interactions. 

! Useful to find missing objects. 
! Time consuming to build but worth the investment. 
! Complement the class diagrams (which represent 

structure).


