
Foundations of Software Engineering

Dr. Radu Marinescu !1

Object-Oriented Analysis and Modeling

Foundations of Software Engineering

Dr. Radu Marinescu

Object-oriented analysis (OOA)

! What are the relevant objects? How do they relate to one
another?
!

! How do we specify/model a problem so that we can create
an effective design?
!

! OOA aims to model the problem domain, by developing an
object-oriented (OO) system.

!2

Foundations of Software Engineering

Dr. Radu Marinescu !3

Elements of the Analysis Model

Use case text &
diagrams
Activity diagrams

Scenario-based
modeling

CRC models
Class diagrams

Class-based
modeling

Data structure diagrams
Data flow diagrams
Control-flow diagrams

Flow-oriented
modeling

State diagrams
Sequence diagrams

Behavioral
modeling

Structured AnalysisObject-oriented Analysis

!4

Overview of
the OOA
Process...

Sequence
Diagrams

Class
Diagrams

Foundations of Software Engineering

Dr. Radu Marinescu

Class-Responsibility-Collaborator (CRC) Modeling

! Technique to identify candidate classes and indicate their
responsibilities and collaborators
! K.Beck&W.Cunningham (1989), R.Wirfs-Brock(1990,2002)

! Uses simple index cards

!5

Foundations of Software Engineering

Dr. Radu Marinescu

CRC Cards Session Scenario

! Use-Case driven
! a use-case is the token

!
! Goal: be able to go through the whole use-case description

by using the responsibilities written on the CRC cards
! ...and of course following the Collaborator links

!6

Foundations of Software Engineering

Dr. Radu Marinescu

Rules for Identifying Classes

1. Retained Information
• information about object must be remembered for the system to function

2. Needed Services
• have a set of operations that change the value of its attributes

3. Multiple Attributes
• focus on “major” information
• object with single attribute is ok during design, but during analysis is just

an attribute of another object

4. Essential Requirements objects
• entities that produce or consume information of the system, in any

solution

!7

Foundations of Software Engineering

Dr. Radu Marinescu

Identifying Responsibilities

! attributes and operations of an identified class
! Guidelines of Wirfs-Brock:

1. System intelligence should be evenly distributed

2. Information about one thing should be localized within a single class

3. Information and its related behavior should stay in the same class

4. Responsibilities should be shared among related classes

!8

Foundations of Software Engineering

Dr. Radu Marinescu !9

Operations = Verbs

! Computation
! Manipulation of data

! e.g., add, delete, modify attributes

! Query
! about the state of an object

! Monitor an object
! for the occurrence of a controlling event

!
! Has knowledge about the state of class and its associations

Foundations of Software Engineering

Dr. Radu Marinescu

Collaborations

! Class can fulfill responsibilities by:
1. using its own operations to manipulate its own attributes
2. collaborating with others

! Three types of generic relationships:
3. has-knowledge-of (association)
4. is-part-of (aggregation)
5. composition

!10

Foundations of Software Engineering

Dr. Radu Marinescu !11

Heuristics for Object-Oriented Modeling

Foundations of Software Engineering

Dr. Radu Marinescu !12

Problema Proliferarii Claselor [Riel96]

! Spaghetti Code vs. Ravioli Code
!

! Cum se manifesta “Codul Ravioli”
! Vreau sa adaug o facilitate noua in sistem. Care 23 de clase din cele 4.200

de clase trebuie sa le modific?

Fiti retinuti in a modela ca si clase
 entitati din afara sistemului de implementat!

! Exemplu: Clientul unui Bancomat
! trimite un mesaj bancomatului

Clase sunt acelea care PRIMESC MESAJE (sunt apelate)
nu cele care TRANSMIT MESAJE (apeleaza)!

Foundations of Software Engineering

Dr. Radu Marinescu !13

Roluri vs. Clase

! Comportamentul este cel care decide!
! daca comportamentul difera: avem clase;
! daca nu: doar roluri ale aceleeasi clase
! depinde de domeniul modelat de aplicatie

" naste() vs. schimbaScutece()

Foundations of Software Engineering

Dr. Radu Marinescu !14

Euristici pentru Eliminare Claselor Inutile

Nu transformati operatiile in clase

Foundations of Software Engineering

Dr. Radu Marinescu !15

Cand Poate Fi Operatia o Clasa?

! cand cerintele sunt de asa natura incat operatiile reprezinta un
“atom” adica “obiectiveaza” o anumita entitate intr-un context dat
! ex. tiparirea tranzactiilor --> operatii persistente
! tiparul Command

Foundations of Software Engineering

Dr. Radu Marinescu

Class Diagrams

Foundations of Software Engineering

Dr. Radu Marinescu !17

Class Diagrams

! Class diagrams represent the structure of the system.
! Class diagrams are used

! during requirements analysis to model problem domain concepts
! during system design to model subsystems and interfaces
! during object design to model classes.

!
Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

* *

Trip
zone:Zone

price:Price

Foundations of Software Engineering

Dr. Radu Marinescu !18

Classes

! A class represents a concept.
! contians state (attributes) and behavior (operations).
! Each attribute has a type.
! Each operation has a signature.
! The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TariffSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

Foundations of Software Engineering

Dr. Radu Marinescu !19

Instances

! An instance represents a phenomenon.
! The name of an instance is underlined and can contain the class of the

instance.
! The attributes are represented with their values.

zone2price = {
{‘1’, .20},  
{‘2’, .40},
{‘3’, .60}}

tariff_1974:TarifSchedule

Good Object-Oriented Design

Dr. Radu Marinescu !20

Instance vs. Class

Rene Magritte, Treachery of Images - 1929

Foundations of Software Engineering

Dr. Radu Marinescu !21

Associations

! Associations denote relationships between classes.
! The multiplicity of an association end denotes how many

objects the source object can legitimately reference.

!
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* price  
zone

Trip

*

Foundations of Software Engineering

Dr. Radu Marinescu !22

1-to-1 and 1-to-Many Associations

1-to-1 association

1-to-many association

*

draw()

Polygon

x:Integer
y:Integer

Point1

Has-capital

name:String

Country

name:String

City
11

Foundations of Software Engineering

Dr. Radu Marinescu !23

Aggregation

! An aggregation is a special case of association denoting a
“consists of” (HAS-A) hierarchy.

! The aggregate is the parent class, the components are the
children class.

1

Car

Engine Door

2..4

Foundations of Software Engineering

Dr. Radu Marinescu !24

Composition

! A solid diamond denote composition, a strong form of
aggregation where components cannot exist without the
aggregate.

3

TicketMachine

ZoneButton

Foundations of Software Engineering

Dr. Radu Marinescu !25

Generalization

! Generalization relationships denote inheritance between classes.
! The children classes inherit the attributes and operations of the

parent class.
! Generalization simplifies the model by eliminating redundancy.

Button

ZoneButtonCancelButton

Foundations of Software Engineering

Dr. Radu Marinescu

Sequence Diagrams

Foundations of Software Engineering

Dr. Radu Marinescu !27

UML Sequence Diagrams

! Sequence Diagram: an "interaction diagram" that models a
single scenario executing in the system
! perhaps 2nd most used UML diagram (behind class diagram)

!
! Participant: an object or entity that acts in the sequence

diagram
! sequence diagram starts with an unattached "found message" arrow

! Message: communication between participant objects
! Axes in a sequence diagram:

! horizontal: which object/participant is acting
! vertical: time (down -> forward in time)

Foundations of Software Engineering

Dr. Radu Marinescu !28

Representing Objects

! squares with object type, optionally preceded by object
name and colon
! write object's name if it clarifies the diagram
! object's "life line" represented by dashed vert. line

Foundations of Software Engineering

Dr. Radu Marinescu !29

! message (method call) indicated by horizontal arrow to
other object
! write message name and arguments above arrow
!
!
!
!
!

! dashed arrow back indicates return
! different arrowheads for normal / concurrent (asynchronous)

methods

Messages between objects

Foundations of Software Engineering

Dr. Radu Marinescu

! Activation: shows when object's method is on the stack
! either that object is running its code, or it is on the stack waiting for

another object's method to finish
! nest to indicate recursion

!30

Indicating method calls

Activation

Nesting

Foundations of Software Engineering

Dr. Radu Marinescu !31

Example 1:

! Building an executable from sources
! load source files and compile them
! load resulting object files and link them
! write executable file

Foundations of Software Engineering

Dr. Radu Marinescu !32

Sequence Diagram – Compilation

:Compiler Linker
Actor Compile

FileSystem

Load Files

Save OBJ Files

Compile files

Link Load OBJ files

Link OBJ files
Write EXE file

Foundations of Software Engineering

Dr. Radu Marinescu !33

Creating and Deleting objects

from M.Fowler-UML Distilled, 2004

Foundations of Software Engineering

Dr. Radu Marinescu !34

Branching Flow: flow goes to different objects
[if condition is met]

:Editor FileSystem
Load File

:BinaryViewer :TextViewer

[text file]

[binary file]

Foundations of Software Engineering

Dr. Radu Marinescu !35

Flow of messages

! The source of an arrow indicates the activation which sent the message
! An activation is as long as all nested activations
! Horizontal dashed arrows indicate data flow
! Vertical dashed lines indicate lifelines

selectZone()

Passenger
ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow

…to be continued...

Foundations of Software Engineering

Dr. Radu Marinescu !36

Iteration & condition

! Iteration is denoted by a * preceding the message name
! Condition is denoted by boolean expression in [] before the message name

…continued from previous slide...

Passenger
ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

*

Foundations of Software Engineering

Dr. Radu Marinescu !37

from M.Fowler-UML Distilled, 2004

Alternative
Notation for
Condition
and Loops

Foundations of Software Engineering

Dr. Radu Marinescu !38

Sequence Diagram Summary

! UML sequence diagram represent behavior in terms of
interactions.

! Useful to find missing objects.
! Time consuming to build but worth the investment.
! Complement the class diagrams (which represent

structure).

