Foundations of Software Engineering

<o

Visi(/)‘ny—\

Requirem.

« “fairy tale” description of the system

(what)

« imprecise and confusing system profile

«+ unsorted interaction stories

Ciistoiner Fragments) - irrelevant, overwhelming details (how)
« no picture, just puzzle pieces
Requirements Engineering in a Nutshell
Dr. Radu Marinescu 1
Y . N . Yo . > .
S ’\) « “fairy tale” description of the system . f\) « “fairy tale” description of the system
Vision _ . Vision _ .
J)J N (what) J)J N (what)
& (] K&,\ « imprecise and confusing system profile = < \,\ ' < imprecise and confusing system profile
o™ « unsorted interaction stories o « unsorted interaction stories
Ciistoiier « irrelevant, overwhelming details (how) Custoiier « irrelevant, overwhelming details (how)
! * no picture, just puzzle pieces] * no picture, just puzzle pieces
I 1
I 1
| |
] !
I !
’ !
: i
/ + major system interactions
— . WHAT < * capture the user goals
« coarse granularity
Analyst | ; Analyst! F
Developer Developer
- ; -
Domain —J— Domain —J—
Expert ﬂ Expert ﬂ
">

_Fr\) « “fairy tale” description of the system
Vision _ - (what)

« imprecise and confusing system profile

« unsorted interaction stories
« irrelevant, overwhelming details
* no picture, just puzzle pieces

(how)

Customer

« capture the user goals
« coarse granularity

« interaction stories, sorted by use cases
* many pieces (scenarios), one picture (use case)
« alternative “hows” for one “what”

{0 major system interactions

Analyst / =
Developst: /2 _i_,| Scenario II How
Sets

Domain i
Expert A

T
\) « “fairy tale” description of the system

Vision (what)
& < k_,\\/‘)/; « imprecise and confusing system profile

Requirem.
Fragments

«+ unsorted interaction stories
« irrelevant, overwhelming details
* no picture, just puzzle pieces

(how)

Customer

+ major system interactions
« capture the user goals
« coarse granularity

Analyst / —‘r—l——

Developer * many pieces (scenarios), one picture (use case)

« alternative “hows” for one “what”

HOW

Domain i
Expert

+ scenario protagonists (Classes, objects)

« identify their role (Responsibilities)
« identify their partners (Collaborations)

WHO

{0 interaction stories, sorted by use cases

Foundations of Software Engineering

Use Cases

= create a set of scenarios that identify a thread of usage
» for the system to be constructed

= scenarios are often called use-cases [Jacobson 1992]
» how systems will be used

Dr. Radu Marinescu

Foundations of Software Engineering

What is use case modeling?

= a view of a system that emphasizes the behavior as it
appears to outside users.

= Partitions system functionality into transactions (‘use
cases’) that are meaningful to users (‘actors’).

Dr. Radu Marinescu

Foundations of Software Engineering

Use Case Diagrams

Used during requirements elicitation to
represent external behavior

Passenger = Actors represent roles,
» atype of user of the system

= Use cases represent a sequence of
interaction for a type of functionality

= Use case model
» the set of all use cases.

» a complete description of the functionality of the
system and its environment

C_

PurchaseTicket

Foundations of Software Engineering

Actors

= an external entity which communicates with the
system:
» User
» External system
» Physical environment

= has a unique name and an optional description.
Passenger

= Examples:
» Passenger: A person in the train
» GPS satellite: Provides the system with GPS coordinates

Dr. Radu Marinescu 9 Dr. Radu Marinescu 10
Foundations of Software Engineering Foundations of Software Engineering
Use Case Use Case Example
= a class of functionality provided by the
Name: purchase ticket Event flow:

system.

© Use case consists of:
= Unique name
PurchaseTicket = Participating actors
= Entry conditions
= Flow (sequence) of events

= Exit conditions
= Special requirements

Dr. Radu Marinescu 11

1. Passenger selects the number of
zones to be traveled.

2. Distributor displays the amount

Participating actor: passenger

Entry condition: due.

" Passenger standing in front of 3. Passenger inserts money, of at
ticket distributor. least the amount due ’

= Passenger has sufficient money to .)
purchase ticket. . Distributor returns change.

5. Distributor issues ticket.
Exit condition:
= Ppassenger has ticket.

Anything missing?

Exceptional cases!

Dr. Radu Marinescu 12

Foundations of Software Engineering

The <<extend>> Relationship

Passenger

PurchaseTicket

_ 7 OA *
N
<<extend>> .~ ! \

~ 1
// I
1

<<extend>>,

\
\
AN
\
\
1 \
1 A N
I <<extend>> '\

>

-

OutOfOrder

Cancel NoChange

represent exceptional or
seldom invoked cases.

The exceptional event
flows are factored out of
the main event flow for
clarity.

Direction of a
<<extend>> relation is to
the extended use case

Dr. Radu Marinescu

13

Foundations of Software Engineering

The <<incilude>> Relationship

= Behavior that is factored out of
Passenger \ the use case.

PurchaseSingleTicket

~
~

~
<<include>> "~ N

<<extend>> _7
”

C >

NoChange

» for reuse, not because it is an

xception
PurchaseMultiCard exceptio

/7
/

/ = The direction of <<include>>
relationship is to the using use

,’ <<include>>

/
SO 2 case

» unlike <<extend>>

CollectMone;\ ~o

SO <Lextend>>
~

-

Cancel

Dr. Radu Marinescu

14

Foundations of Software Engineering

Use Case Modeling: Core Elements

Construct |Description

Syntax

use case

actors of the system.

A sequence of actions, including
variants, that a system (or other

entity) can perform, interacting with

with these use cases.

actor A coherent set of roles that users
of use cases play when interacting

ActorName

system
boundary

system.

Represents the boundary between
the physical system and the actors
who interact with the physical

Dr. Radu Marinescu

15

Foundations of Software Engineering

Use Case Modeling: Core Relationships

Construct

Description

Syntax

association

The participation of an actor in a use
case. i.e., instance of an actor and
instances of a use case communicate
with each other.

generalization

A taxonomic relationship between a
more general use case and a more
specific use case.

extend

A relationship from an extension use
case to a base use case, specifying
how the behavior for the extension
use case can be inserted into the
behavior defined for the base use
case.

<<extend>>
>

Dr. Radu Marinescu

16

Foundations of Software Engineering

Use Case Modeling: Core Relationships (2)

Foundations of Software Engineering

Construct Description Syntax
include An relationship from a base use case
to an inclusion use case, specifying <<include>>

how the behavior for the inclusion use
case is inserted into the behavior
defined for the base use case.

e

Dr. Radu Marinescu 17

Three Levels of Abstractions for Use Cases [A.Cockburn]

= Sea Level
» User interacts with system
» Maijor interactions
» Precise goal for using a system

= Fish Level
» the use cases that factor out commonalities

= Kite Level (Business Use Cases)
» Show how sea-level use cases fit into wider business interactions

Dr. Radu Marinescu 18

Foundations of Software Engineering

Identifying Actors

= Actors are not part of the system
» They interact with the system from outside

= An actor may
1. Only input information to the system
2. Only receive information from the system
3. Input and receive information to and from the system

» Don’t create an actor based on the official position of a
person

» i.e. if a person fulfills a combination of roles, each role is an actor,
but the combination is not!

Dr. Radu Marinescu 19

Foundations of Software Engineering

Identifying Use Cases

A use case typically represents a major piece of functionality
that is complete from beginning to end.
A use case must deliver something of value to an actor.

= Good Questions:
» Can all functional requirements be performed by the use cases?
» What are the tasks of each actor?

Dr. Radu Marinescu 20

Foundations of Software Engineering

Use Case Modeling Tips

Each use case describes a significant chunk of system usage
» that is understandable by both domain experts and programmers

When defining use cases in text, use nouns and verbs accurately and
consistently

» to help derive later objects and messages for interaction diagrams

Factor out common usages that are required by multiple use cases
» If the usage is required use <<include>>

» If the base use case is complete and the usage may be optional, consider use
<<extend>>

A use case diagram should
» contain only use cases at the same level of abstraction
» include only actors who are required

Dr. Radu Marinescu 21

Foundations of Software Engineering

Software Requirements Analysis

Dr. Radu Marinescu 22

Foundations of Software Engineering

Software Requirements Analysis

= Build models of data and behavioral domain
» that will be treated by software

= Result: representation of data, function
» behavior that can be translated into design:

= Means to assess quality once the system is built

Dr. Radu Marinescu 23

Foundations of Software Engineering

Initiate the Requirements Analysis Process

= First Meetings like ... dating :)

» both want it to be a success, yet they don’t know what to say and are
afraid that it might be misinterpreted

= Ask context-free questions

» Who requested this work? Who will use the solution? What's the
benefit?

» What is a good output? What's the environment where it will work?
= Ask meta-questions
» Are my question relevant? Should | be asking you something else?

» Do you feel comfortable with answering my questions? Is there
someone else who could answer these questions more easy?

Dr. Radu Marinescu 24

Foundations of Software Engineering

Facilitated Application Specification Techniques (FAST)

= Defeat the “us and them” mentality
» communicate through more than memos and documents
= Goal:
» to identify problem, specify a preliminary set of requirements

= Guidelines:
» Meeting at neutral site with both sw. engineers and customers
» Agenda Formal-Informal
* cover major points, yet stimulate free flow of ideas
» Facilitator controls the meeting
¢ best if it's an outsider

Dr. Radu Marinescu 25

Foundations of Software Engineering

Facilitated Application Specification Techniques (FAST)

Customer(s)

Developer(s)

from R.S.Pressman, 2005

Dr. Radu Marinescu 26

Foundations of Software Engineering

FAST Process (1)

= Start meeting from a 1-2 pg. “product request’
» as a result of initial discussions

= Each participant comes to the meeting with 4 lists:
1. List of Objects
a. produced objects
b. used objects, during processing
c. environmental objects (surround the system)
2. List of Services
» functions and processes that manipulate the objects
3. List of Constraints
» cost, size, business rules
4. List of Performance Criteria
» speed, accuracy

= Lists don’t have to be exhaustive, just reflect various p.o.v

Dr. Radu Marinescu 27

Foundations of Software Engineering

FAST Process (2)

= Start with an agreement on the justification of the product
= Pin lists on wall
= Create a combined list on each topic area
» eliminate redundancies
» don’t delete anything!
= Develop a consensus list
» after all lists have been combined...
» lists get shortened, lengthened, rephrased
= Divide team into sub-teams and develop mini-specifications
» Alternative: develop Use Cases
= Joined meeting and discuss emerged changes
» also build a list of issues

Dr. Radu Marinescu 28

