
Foundations of Software Engineering

Dr. Radu Marinescu !1

Requirements Engineering in a Nutshell

Foundations of Software Engineering

Dr. Radu Marinescu

Use Cases

! create a set of scenarios that identify a thread of usage
! for the system to be constructed

!
! scenarios are often called use-cases [Jacobson 1992]

! how systems will be used

!7

Foundations of Software Engineering

Dr. Radu Marinescu !8

What is use case modeling?

!
! a view of a system that emphasizes the behavior as it

appears to outside users.
!

! Partitions system functionality into transactions (‘use
cases’) that are meaningful to users (‘actors’).

Foundations of Software Engineering

Dr. Radu Marinescu !9

Use Case Diagrams

Used during requirements elicitation to
represent external behavior
!

! Actors represent roles,
! a type of user of the system

! Use cases represent a sequence of
interaction for a type of functionality

! Use case model
! the set of all use cases.
! a complete description of the functionality of the

system and its environment

Passenger

PurchaseTicket

Foundations of Software Engineering

Dr. Radu Marinescu !10

Actors

! an external entity which communicates with the
system:
! User
! External system
! Physical environment

!
! has a unique name and an optional description.
!

! Examples:
! Passenger: A person in the train
! GPS satellite: Provides the system with GPS coordinates

Passenger

Foundations of Software Engineering

Dr. Radu Marinescu !11

Use Case
! a class of functionality provided by the

system.
!
Use case consists of:
! Unique name
! Participating actors
! Entry conditions
! Flow (sequence) of events
! Exit conditions
! Special requirements

PurchaseTicket

Foundations of Software Engineering

Dr. Radu Marinescu !12

Use Case Example

Name: Purchase ticket
!
Participating actor: Passenger
!
Entry condition:
! Passenger standing in front of

ticket distributor.
! Passenger has sufficient money to

purchase ticket.
!

Exit condition:
! Passenger has ticket.

Event flow:
1. Passenger selects the number of

zones to be traveled.
2. Distributor displays the amount

due.
3. Passenger inserts money, of at

least the amount due.
4. Distributor returns change.
5. Distributor issues ticket.

Anything missing?

Exceptional cases!

Foundations of Software Engineering

Dr. Radu Marinescu !13

The <<extend>> Relationship
! represent exceptional or

seldom invoked cases.
!

! The exceptional event
flows are factored out of
the main event flow for
clarity.
!

! Direction of a
<<extend>> relation is to
the extended use case

Passenger

PurchaseTicket

NoChange

<<extend>>OutOfOrder

<<extend>>

Cancel

<<extend>>

Foundations of Software Engineering

Dr. Radu Marinescu !14

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extend>>

Cancel

<<extend>>
CollectMoney

<<include>>

<<include>>

The <<include>> Relationship
! Behavior that is factored out of

the use case.
! for reuse, not because it is an

exception

!
! The direction of <<include>>

relationship is to the using use
case
! unlike <<extend>>

Foundations of Software Engineering

Dr. Radu Marinescu !15

Use Case Modeling: Core Elements

Foundations of Software Engineering

Dr. Radu Marinescu !16

Use Case Modeling: Core Relationships

<<extend>>

Foundations of Software Engineering

Dr. Radu Marinescu !17

Use Case Modeling: Core Relationships (2)

<<include>>

Foundations of Software Engineering

Dr. Radu Marinescu !18

Three Levels of Abstractions for Use Cases [A.Cockburn]

!
! Sea Level

! User interacts with system
! Major interactions
! Precise goal for using a system

!
! Fish Level

! the use cases that factor out commonalities
!

! Kite Level (Business Use Cases)
! Show how sea-level use cases fit into wider business interactions

Foundations of Software Engineering

Dr. Radu Marinescu !19

Identifying Actors

! Actors are not part of the system
! They interact with the system from outside

!
! An actor may

1. Only input information to the system
2. Only receive information from the system
3. Input and receive information to and from the system
!

! Don’t create an actor based on the official position of a
person
! i.e. if a person fulfills a combination of roles, each role is an actor,

but the combination is not!

Foundations of Software Engineering

Dr. Radu Marinescu !20

Identifying Use Cases

! Good Questions:
! Can all functional requirements be performed by the use cases?
! What are the tasks of each actor?

A use case typically represents a major piece of functionality
that is complete from beginning to end.

A use case must deliver something of value to an actor.

Foundations of Software Engineering

Dr. Radu Marinescu !21

Use Case Modeling Tips
! Each use case describes a significant chunk of system usage

!that is understandable by both domain experts and programmers
!

! When defining use cases in text, use nouns and verbs accurately and
consistently
!to help derive later objects and messages for interaction diagrams
!

! Factor out common usages that are required by multiple use cases
! If the usage is required use <<include>>
! If the base use case is complete and the usage may be optional, consider use

<<extend>>
!

! A use case diagram should
! contain only use cases at the same level of abstraction
! include only actors who are required

Foundations of Software Engineering

Dr. Radu Marinescu

Software Requirements Analysis

!22

Foundations of Software Engineering

Dr. Radu Marinescu

Software Requirements Analysis

! Build models of data and behavioral domain
! that will be treated by software

!
! Result: representation of data, function

! behavior that can be translated into design:
!

! Means to assess quality once the system is built

!23

Foundations of Software Engineering

Dr. Radu Marinescu

Initiate the Requirements Analysis Process

! First Meetings like ... dating :)
! both want it to be a success, yet they don’t know what to say and are

afraid that it might be misinterpreted

! Ask context-free questions
! Who requested this work? Who will use the solution? What’s the

benefit?
! What is a good output? What’s the environment where it will work?

! Ask meta-questions
! Are my question relevant? Should I be asking you something else?
! Do you feel comfortable with answering my questions? Is there

someone else who could answer these questions more easy?

!24

Foundations of Software Engineering

Dr. Radu Marinescu

Facilitated Application Specification Techniques (FAST)
! Defeat the “us and them” mentality

! communicate through more than memos and documents

! Goal:
! to identify problem, specify a preliminary set of requirements

!
! Guidelines:

! Meeting at neutral site with both sw. engineers and customers
! Agenda Formal-Informal

" cover major points, yet stimulate free flow of ideas
! Facilitator controls the meeting

" best if it’s an outsider

!25

Foundations of Software Engineering

Dr. Radu Marinescu !26

Facilitated Application Specification Techniques (FAST)

from R.S.Pressman, 2005

Foundations of Software Engineering

Dr. Radu Marinescu

FAST Process (1)
! Start meeting from a 1-2 pg. “product request”

! as a result of initial discussions

! Each participant comes to the meeting with 4 lists:
1. List of Objects

a. produced objects
b. used objects, during processing
c. environmental objects (surround the system)

2. List of Services
‣ functions and processes that manipulate the objects

3. List of Constraints
‣ cost, size, business rules

4. List of Performance Criteria
‣ speed, accuracy

! Lists don’t have to be exhaustive, just reflect various p.o.v

!27

Foundations of Software Engineering

Dr. Radu Marinescu

FAST Process (2)
! Start with an agreement on the justification of the product
! Pin lists on wall
! Create a combined list on each topic area

! eliminate redundancies
! don’t delete anything!

! Develop a consensus list
! after all lists have been combined...
! lists get shortened, lengthened, rephrased

! Divide team into sub-teams and develop mini-specifications
! Alternative: develop Use Cases

! Joined meeting and discuss emerged changes
! also build a list of issues

!28

