
Foundations of Software Engineering

Dr. Radu Marinescu

Software Processes

!1

Foundations of Software Engineering

Dr. Radu Marinescu

The software process

! A structured set of activities required to develop a software
system
! Specification;
! Design;
! Validation;
! Evolution.

!
! Software process model = abstract representation of a

process.
! a description of a process from some particular perspective.

!2

Foundations of Software Engineering

Dr. Radu Marinescu

Generic software process models

! The waterfall model
! Separate and distinct phases of specification and development.

! Evolutionary development
! Specification, development and validation are interleaved.

! Component-based software engineering
! The system is assembled from existing components.

!
! Many variants of these models exist

!3

Foundations of Software Engineering

Dr. Radu Marinescu

Basically....

...only two types of processes
!
Waterfall

breaks down project based on activities
!

Iterative
breaks down project based on subsets of functionality

!4

Foundations of Software Engineering

Dr. Radu Marinescu !5

A Layered View of Software Engineering
Software Engineering

a “quality” focus

process model

methods

tools

from R.S.Pressman, 2005

! Quality Focus = bedrock
! Process = framework and technological glue
! Methods = how-to (in requirement, design, construction, testing etc.)
! Tools = support for methods and process (CASE)

Foundations of Software Engineering

Dr. Radu Marinescu

Phases of Software Engineering
! Definition Phase (WHAT)

! what is processed? what performance? what interfaces? what
constraints?

! (i) information engineering; (ii) requirements eng. ; (iii) project planning

! Development Phase (HOW)
! how to structure data? how to implement functions? how to choose an

architecture? how to translate design into implementation?
! (i) software design; (ii) code construction ; (iii) software testing

! Support Phase (CHANGE)
! change erroneous code; change inadequate code
! Types of change:

1. Correction -- error in code
2. Adaptation -- change in environment
3. Enhancement -- change in needs

!6

Foundations of Software Engineering

Dr. Radu Marinescu

Waterfall Model

!7

Foundations of Software Engineering

Dr. Radu Marinescu

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

!8

from I.Sommerville, SE8

Foundations of Software Engineering

Dr. Radu Marinescu

Waterfall model phases

! Requirements analysis and definition
! System and software design
! Implementation and unit testing
! Integration and system testing
! Operation and maintenance
!

! Main drawback: difficulty to accommodate change
! after the process is underway.
! One phase has to be complete before moving onto the next phase.

!9

Foundations of Software Engineering

Dr. Radu Marinescu

Waterfall model problems

! Inflexible partitioning of the project into distinct stages
! makes it difficult to respond to changing customer

requirements.
! Appropriate when:

1. requirements are well-understood and
2. changes will be fairly limited during the design process.
!

! Few business systems have stable requirements.
! The waterfall model is mostly used for large systems

engineering projects where a system is developed at
several sites.

!10

Foundations of Software Engineering

Dr. Radu Marinescu

Basically....

...only two types of processes
!
Waterfall

breaks down project based on activities
!

Iterative
breaks down project based on subsets of functionality

!11

Foundations of Software Engineering

Dr. Radu Marinescu

Iterative Development

!12

Foundations of Software Engineering

Dr. Radu Marinescu

Essence of Iterations

! Get product quality, after each iteration
!
!

! No prototype! No draft!
!
!

! Real product!

!13

Foundations of Software Engineering

Dr. Radu Marinescu

Iterative Process (w. Incremental delivery)

! Development and delivery is broken down into increments
! each increment delivering part of the required functionality
! instead of delivering the system as a single delivery.
!

! Prioritized user requirements
! the highest priority requirements are included in early increments.
!

! Requirements frozen during the development of an increment
! yet requirements for later increments can continue to evolve.

!14

Foundations of Software Engineering

Dr. Radu Marinescu

Iterative Process (w. Incremental delivery)

!15

from I.Sommerville, SE8

Validate
increment

Build system
increment

Specify system
increment

Design system
architecture

Define system
deliverables

System
complete?

Integrate
increment

Validate
system

Deliver final
system

YES

NO

Foundations of Software Engineering

Dr. Radu Marinescu

Time Boxing

! Set a fix time for each iteration
!

! When needed...
!
...Slip features list! Don’t slip date of iteration
!

! Good exercise for prioritizing requirements

!16

Foundations of Software Engineering

Dr. Radu Marinescu

Advantages of Iterative Development

! Customer value can be delivered with each increment
! system functionality is available earlier.

!
! Lower risk of overall project failure.
!

! Highest priority system services tend to receive the most testing.

!17

Foundations of Software Engineering

Dr. Radu Marinescu

Advantages of Iterative Development

! Accelerated delivery of customer services.
!increment delivers top priority functionality.
!

! User engagement with the system.
!Users have to be involved

" the system is more likely to meet their requirements
" the users are more committed to the system.

!18

Foundations of Software Engineering

Dr. Radu Marinescu

Problems of Iterative Development

! Management problems
! Progress can be hard to judge and problems hard to find

because there is no documentation to demonstrate what has
been done.

! Contractual problems
! The normal contract may include a specification; without a

specification, different forms of contract have to be used.
! Validation problems

! Without a specification, what is the system being tested
against?

! Maintenance problems
! Continual change tends to corrupt software structure making

it more expensive to change and evolve to meet new
requirements.

!19

Foundations of Software Engineering

Dr. Radu Marinescu

The Issue of Rework

! Iterative development may lead to changing/deleting code
from previous iterations
!

! This is a waste ... in manufacturing ;-)
!

! Better to rework than to patch around bad designed code
!

! Supported by techniques
! Refactoring
! Regression Test
! Continuous Integration

!20

Foundations of Software Engineering

Dr. Radu Marinescu

Predictive Planning

! Predictive Planning
! 1. Make plans (hard to predict)
! 2. Follow the plan (easy to predict)
!

! The problem with predictive planning
! very often changes affect plans
!

! 2 Ways of dealing with changing requirements:
! 1. Better requirements analysis
! 2. Welcome change! :)

!21

Foundations of Software Engineering

Dr. Radu Marinescu

Adaptive Planning

! Prediction is an illusion!
!

! Software is controllable, but no predictable.
!

! There is no “according to the plan” in adaptive planning
! there is planning!
! but plan is only a baseline
!

! Predictive: fixed-price / fixed-scope projects
!

! Adaptive: Fixed price / variable scope

!22

Foundations of Software Engineering

Dr. Radu Marinescu

Agile methods

! Dissatisfaction with the overheads involved in design
methods led to the creation of agile methods:
! Focus on the code rather than a preset design;
! Iterative approach to software development;
! Deliver working software quickly and evolve this quickly to

meet changing requirements.

!23

Foundations of Software Engineering

Dr. Radu Marinescu

Agile Manifesto

!24

We are uncovering better ways of developing software by doing it and
helping others do it.!

Through this work we have come to value:!

Individuals and interactions over processes and tools!

Working software over comprehensive documentation!

Customer collaboration over contract negotiation!

Responding to change over following a plan!

!
That is, while there is value in the items on the right, !

we value the items on the left more.

Foundations of Software Engineering

Dr. Radu Marinescu

Principles of agile methods

!25

! Customer satisfaction by rapid, continuous delivery of useful software
! Software is delivered frequently (weeks rather than months)
! Working software is the principal measure of progress
! Even late changes in requirements are welcomed
! Close (daily) cooperation between business people and developers
! Colocation: Face-to-face conversation is the best form of communication
! Trust: build around motivated individuals, who should be trusted
! Continuous attention to technical excellence and good design
! Simplicity
! Self-organizing teams

Foundations of Software Engineering

Dr. Radu Marinescu

Scrum

!26

Foundations of Software Engineering

Dr. Radu Marinescu

Scrum Roles

! Scrum Master
! the Project Manager

! Product Owner
! represents the stakeholders

! Team

!27

Foundations of Software Engineering

Dr. Radu Marinescu

Scrum

!28

Timebox

http://en.wikipedia.org/wiki/Scrum_(development)

Foundations of Software Engineering

Dr. Radu Marinescu

Scrum Burndown Chart

!29

Foundations of Software Engineering

Dr. Radu Marinescu

Extreme Programming

!30

Foundations of Software Engineering

Dr. Radu Marinescu

Extreme programming (XP)

! Best-known agile method.
! Extreme Programming (XP) takes

an ‘extreme’ approach to iterative
development.
! New versions each day/night
! Increments are delivered to

customers every 2-3 weeks;
! All tests must be run for every build

" Build is only accepted if tests run
successfully.

!31

Foundations of Software Engineering

Dr. Radu Marinescu

The XP release cycle

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test software

!32

from I.Sommerville, SE8

Foundations of Software Engineering

Dr. Radu Marinescu

The Story within XP Story Cards...

!33

Foundations of Software Engineering

Dr. Radu Marinescu

Extreme programming practices 1
Incremental planning Requirements are recorded on Story Cards and the Stories to be

included in a release are determined by the time available and
their relative priority. The developers break these Stories into
development ‘Tasks’.

Small Releases The minimal useful set of functionality that provides business
value is developed first. Releases of the system are frequent and
incrementally add functionality to the first release.

Simple Design Enough design is carried out to meet the current requirements
and no more.

Test first development An automated unit test framework is used to write tests for a new
piece of functionality before that functionality itself is
implemented.

Refactoring All developers are expected to refactor the code continuously as
soon as possible code improvements are found. This keeps the
code simple and maintainable.

!34

Foundations of Software Engineering

Dr. Radu Marinescu

Extreme programming practices 2
Pair Programming Developers work in pairs, checking each other’s work and

providing the support to always do a good job.

Collective Ownership The pairs of developers work on all areas of the system, so that
no islands of expertise develop and all the developers own all the
code. Anyone can change anything.

Continuous Integration As soon as work on a task is complete it is integrated into the
whole system. After any such integration, all the unit tests in the
system must pass.

Sustainable pace Large amounts of over-time are not considered acceptable as the
net effect is often to reduce code quality and medium term
productivity

On-site Customer A representative of the end-user of the system (the Customer)
should be available full time for the use of the XP team. In an
extreme programming process, the customer is a member of the
development team and is responsible for bringing system
requirements to the team for implementation.

!35

Foundations of Software Engineering

Dr. Radu Marinescu

When doesn’t XP work?

! Business Culture
! Big forehead specifications
! Obsession with writing useless documents

! Extra-work to prove commitment to the company
! instead of just going for a 40h work-week... no extra-time!

! Size-matters
! doesn’t work with 100 programmers
! only <= 10 programmers

! Physical separation
! even separate floor kills XP

! Environments with high viscosity
! large build times, impossible to run all tests etc.

!36

Foundations of Software Engineering

Dr. Radu Marinescu

Risk Aware Processes

!37

Foundations of Software Engineering

Dr. Radu Marinescu

The Rational Unified Process

! A modern process model derived from the work on the UML
and associated process.

! Normally described from 3 perspectives:
! Dynamic perspective: phases over time;
! Static perspective: process activities;
! Practice perspective: suggests good practice.

!38

Incremental + Iterative + Risk Aware

Foundations of Software Engineering

Dr. Radu Marinescu

RUP phase model

Phase iteration

Inception Elaboration Construction Transition

!39

Foundations of Software Engineering

Dr. Radu Marinescu

RUP Dynamic Perspective: Phases

! Inception
! Establish the business case for the system.

! Elaboration
! Develop an understanding of the problem domain and the system

architecture.

! Construction
! System design, programming and testing.

! Transition
! Deploy the system in its operating environment.

!40

Foundations of Software Engineering

Dr. Radu Marinescu

RUP Phases-Activities Matrix

!41

Foundations of Software Engineering

Dr. Radu Marinescu

RUP Dynamic Perspective: Activities/Workflows/Disciplines
Workflow Description

Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases are
developed to model the system requirements.

Analysis and design A design model is created and documented using architectural
models, component models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design
models helps accelerate this process.

Test Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the
implementation.

Deployment A product release is created, distributed to users and installed in their
workplace.

Configuration and
change management

This supporting workflow managed changes to the system (see
Chapter 29).

Project management This supporting workflow manages the system development (see
Chapter 5).

Environment This workflow is concerned with making appropriate software tools
available to the software development team.

!42

Foundations of Software Engineering

Dr. Radu Marinescu

RUP good practice

1. Develop software iteratively
2. Manage requirements

• explicit management: use-cases

3. Visually model software
• UML diagrams

4. Verify quality of software
5. Control changes to software

• make use of CMS (Control Management Systems) for versioning,
build and integration

!43

