
V20180301

Computer Network Programming

Dr. Petru Florin Mihancea

Elements of Secure
Communication

Dr. Petru Florin Mihancea

1
The Problem

Dr. Petru Florin Mihancea

Remember our Demo with TCP Sockets?

Can one see what is actually
passed through the network?

Dr. Petru Florin Mihancea

Remember our Demo with TCP Sockets?

Can one see what is actually
passed through the network?

No Confidentiality

No Integrity

Dr. Petru Florin Mihancea

2
Some Security Concepts

addressing confidentiality and integrity

Just remember that

many other security

issues exist in

distributed systems

e.g. availability

Dr. Petru Florin Mihancea

Symmetric (Share Secret) Key Cryptography

Communicating nodes (Alice and Bob) have a
secret (only them know it) key KAB

A sends the encrypted message {M}KAB
Only B can decrypt and extract M knowing KAB

Algorithms
Encrypt so that is computationally unfeasible to decrypt
without knowing the key or by trying all the keys
e.g., DES, IDEA, RC4, AES

Pros/Cons

Fast & can ensure secrecy, integrity and authentication
(if the key is not compromised)
Hard to establish a common secret key in a large
distributed environment

Dr. Petru Florin Mihancea

Asymmetric (public) Key Cryptography

Receiver node (Bob) has a pair KB_Public-KB_Private
Alice sends the encrypted message {M}KB_Public
Only B can decrypt and extract M using its non-disclosable
KB_Private

Cons/Pros
Significantly slower that symmetric key cryptography,
must be sure of the ownership of the public key
Enables digital signatures and … establishing a common
secret key to apply symmetric cryptography next :)

Algorithms
Encrypt so that is computationally unfeasible to decrypt
without knowing the private key, by trying all the keys or
trying to infer the private key
RSA

Dr. Petru Florin Mihancea

Public-Key Distribution Problem
How does Alice know KB_Public is really Bob’s?

Alice Bob

get_B_public_key

B_public_key

Dr. Petru Florin Mihancea

Public-Key Distribution Problem
How does Alice know KB_Public is really Bob’s?

Intruder

Alice Bob

get_B_public_key
get_B_public_key

B_public_key

Intruder_public_key

Man-In-The-Middle

Attack

The intruder can
decrypt A’s message

Dr. Petru Florin Mihancea

Public-Key Certificate
A document guarantying something
e.g., the ownership of a public-key

Digitally signed by an issuer

Digital signature
The issuer has his own KIssuer_Public - KIssuer_Private pair
His signature is {Digest(Document)}KIssuer_Private

Digest functions are secure hash functions e.g., MD5, SHA, SHA2
Anybody can verify the signature on a document

Decrypt the signature using the KIssuer_Public and compare the digests

But how does Alice

know that the Issuer is

right (the validity of

KIssuer_Public)?

Checking the certificate of the issuer that is
issued by a greater authority, and then the
certificate of that authority and so on …

Until a trusted

authority is reached in

this chain

Dr. Petru Florin Mihancea

3
keytool

The Java Key & Certificate Management Tool

Dr. Petru Florin Mihancea

Frequent commands (1)

keytool
 -genkeypair -alias key_pair_name
 -keystore filename.jks -storetype jks

Generates a new public-private key pair
•with a given name (alias)
•saved in the specified keystore having the given storetype format
•the public key is wrapped into a digitally self-signed certificate
•you’ll be asked (among others) about the Common Name (CN)

referring to the name you are associating to the public-key

Many other options

are possible to control

the size of the keys,

the algorithm, etc.

keytool
 -certreq -alias key_pair_name -file filename.csr
 -keystore filename.jks -storetype jks
Generates a certificate signing request file

•for the given key pair (alias) from the given keystore
•next, you should follow the signing authority procedure

Dr. Petru Florin Mihancea

Frequent commands (2)

keytool
 -exportcert -alias key_pair_name -file certificate.cer
 -keystore filename.jks -storetype jks
Saves the certificate in the given file

•associated to a given entry (alias) from the given keystore

keytool
 -importcert -alias name -file certificate.cer
 -keystore filename.jks -storetype jks
Records the certificate from the given file in the given keystore

•replaces the certificate if a key pair with the given alias exists
used to record the signed certificate got from an authority

•otherwise, adds a trusted certificate entry in the keystore
used to mark an authority certificate as trusted; cacerts keystore in the Java home
folder already contains the certificates of many world-wide trusted authorities

Be careful at the

certificate file format

e.g. DER or PEM

Dr. Petru Florin Mihancea

4
SSL / TLS

Secure Sockets Layer / Transport Layer Security
and corresponding API in Java

Dr. Petru Florin Mihancea

Transport Extension

Transport

Application

Host-to-Network

Internet

SSL / TLS

Ensures transparent data transport between
application processes, guaranteeing secrecy, integrity
and (optionally) partner authentication

G. Coulourie et. al., Distributed Systems

Java Secure Socket Extension

(JSSE) provides a framework

and an implementation in Java

Dr. Petru Florin Mihancea

Secure TCP Sockets

...
+Socket()
+connect(endpoint : SocketAddress) : void
+close() : void
...
+getInputStream() : InputStream
+getOutputStream() : OutputStream
...
+getLocalAddress() : InetAddress
+getLocalPort() : int
+getInetAddress() : InetAddress
+getPort() : int
...

Socket

...
+ServerSocket()
+bind(endpoint : SocketAddress, backlog : int) : void
+accept() : Socket
...
+getInetAddress() : InetAddress
+getLocalPort() : int
+isBound() : boolean
...

ServerSocket

Client/Server code works

transparently with simple or

SSL/TLS sockets

+createServerSocket() : ServerSocket
…

SSLServerSocketFactory

+createSocket() : Socket
…

SSLSocketFactory

prepares prepares

...

SSLSocket
...
+setNeedClientAuth(need : boolean) : void
…

SSLServerSocket

Dr. Petru Florin Mihancea

+getInstance(protocol : String, provider : String) : SSLContext
+getInstance(protocol : String) : SSLContext
…
+init(km:KeyManager[*], tm: TrustManager[*], random : SecureRandom): void
…
+getServerSocketFactory() : SSLServerSocketFactory
+getSocketFactory() : SSLSocketFactory

SSLContext

Obtaining a SSL/TLS Implementation

The provider
a particular implementation of the security subsystem e.g. “SunJSSE”
all registered providers can be found via Security.getProviders()

The protocol
specifies what protocol to be used e.g., “TLSv1.2”
see the Standard Algorithm Name Documentation

Dr. Petru Florin Mihancea

Key/Trust Managers

…

<<interface>>
KeyManager

Manages key material required
to authenticate to the peer

Usually needed on server to

authenticate to the client;

contains public-private key pair

including the public-key certificate

…

<<interface>>
TrustManager

Manages trust material helping
to decide if the peer is authentic

Usually needed on client to

recognise the server; contains

the certificates of the issuers

that the client trust

prepares

+getKeyManagers() : KeyManager[*]
…
+getInstance(alg:String) : KeyManagerFactory
+init(ks: KeyStore, pass : char[]) : void

KeyManagerFactory

+getTrustManagers() : TrustManager[*]
…
+getInstance(alg:String) : TrustManagerFactory
+init(ks: KeyStore) : void

TrustManagerFactory

prepares

“PKIX”

algorithm

+getInstance(type : String) : KeyStore
+load(in : InputStream, pass : char[]) : void
…

KeyStore

loads loads

Dr. Petru Florin Mihancea

Demo Application

5
Secure our application that

was based on TCP sockets.

In general, other

infrastructures can be

configured to work over

SSL/TLS.

