MIPS Assembly Language Programming CS50 Discussion and Project Book

Daniel J. Ellard

September, 1994

Contents

1 Data Representation 1
1.1 Representing Integers 1
1.1.1 Unsigned Binary Numbers 1
1.1.1.1 Conversion of Binary to Decimal 2
1.1.1.2 Conversion of Decimal to Binary 4
1.1.1.3 Addition of Unsigned Binary Numbers 4
1.1.2 Signed Binary Numbers 6
1.1.2.1 Addition and Subtraction of Signed Binary Numbers 8
1.1.2.2 Shifting Signed Binary Numbers 9
1.1.2.3 Hexadecimal Notation 9
1.2 Representing Characters 10
1.3 Representing Programs 11
1.4 Memory Organization 12
1.4.1 Units of Memory 13
1.4.1.1 Historical Perspective 13
1.4.2 Addresses and Pointers 13
1.4.3 Summary 14
1.5 Exercises 15
1.5.1 15
1.5.2 15
1.5.3 15
2 MIPS Tutorial 17
2.1 What is Assembly Language? 17
2.2 Getting Started: add.asm 18
2.2.1 Commenting 18
2.2.2 Finding the Right Instructions 19
2.2.3 Completing the Program 20
2.2.3.1 Labels and main 20
2.2.3.2 Syscalls 22
2.3 Using SPIM 23
2.4 Using syscall: add2.asm 24
2.4.1 Reading and Printing Integers 25
2.5 Strings: the hello Program 26
2.6 Conditional Execution: the larger Program 28
2.7 Looping: the multiples Program 31
2.8 Loads: the palindrome.asm Program 33
2.9 The atoi Program 36
2.9.1 atoi-1 36
2.9.2 atoi-2 38
2.9.3 atoi-3 39
2.9.4 atoi-4 39
2.10 Exercises 42
2.10.1 42
2.10.2 42
2.10.3 42
3 Advanced MIPS Tutorial 43
3.1 Function Environments and Linkage 43
3.1.1 Computing Fibonacci Numbers 45
3.1.1.1 Using Saved Registers: fib-s.asm 45
3.1.1.2 Using Temporary Registers: fib-t.asm 47
3.1.1.3 Optimization: fib-o.asm 48
3.2 Structures and sbrk: the treesort Program 50
3.2.1 Representing Structures 51
3.2.2 The sbrk syscall 52
3.3 Exercises 53
3.3.1 53
3.3.2 53
3.3.3 53
3.3.4 53
3.3.5 54
CONTENTS iii
4 The MIPS R2000 Instruction Set 55
4.1 A Brief History of RISC 55
4.2 MIPS Instruction Set Overview 56
4.3 The MIPS Register Set 57
4.4 The MIPS Instruction Set 57
4.4.1 Arithmetic Instructions 59
4.4.2 Comparison Instructions 60
4.4.3 Branch and Jump Instructions 60
4.4.3.1 Branch 60
4.4.3.2 Jump 61
4.4.4 Load, Store, and Data Movement 61
4.4.4.1 Load 61
4.4.4.2 Store 62
4.4.4.3 Data Movement 63
4.4.5 Exception Handling 63
4.5 The SPIM Assembler 64
4.5.1 Segment and Linker Directives 64
4.5.2 Data Directives 65
4.6 The SPIM Environment 65
4.6.1 SPIM syscalls 65
4.7 The Native MIPS Instruction Set 65
4.8 Exercises 67
4.8.1 67
5 MIPS Assembly Code Examples 69
5.1 add2.asm 70
5.2 hello.asm 71
5.3 multiples.asm 72
5.4 palindrome.asm 74
5.5 atoi-1.asm 76
5.6 atoi-4.asm 78
5.7 printf.asm 80
5.8 fib-o.asm 84
5.9 treesort.asm 86

Chapter 1

Data Representation

by Daniel J. Ellard

In order to understand how a computer is able to manipulate data and perform computations, you must first understand how data is represented by a computer.

At the lowest level, the indivisible unit of data in a computer is a bit. A bit represents a single binary value, which may be either 1 or 0 . In different contexts, a bit value of 1 and 0 may also be referred to as "true" and "false", "yes" and "no", "high" and "low", "set" and "not set", or "on" and "off".

The decision to use binary values, rather than something larger (such as decimal values) was not purely arbitrary- it is due in a large part to the relative simplicity of building electronic devices that can manipulate binary values.

1.1 Representing Integers

1.1.1 Unsigned Binary Numbers

While the idea of a number system with only two values may seem odd, it is actually very similar to the decimal system we are all familiar with, except that each digit is a bit containing a 0 or 1 rather than a number from 0 to 9 . (The word "bit" itself is a contraction of the words "binary digit") For example, figure 1.1 shows several binary numbers, and the equivalent decimal numbers.

In general, the binary representation of 2^{k} has a 1 in binary digit k (counting from the right, starting at 0) and a 0 in every other digit. (For notational convenience, the

Figure 1.1: Binary and Decimal Numbers

Binary		Decimal
0	$=$	0
1	$=$	1
10	$=$	2
11	$=$	3
100	$=$	4
101	$=$	5
110	$=$	6
\vdots	\vdots	\vdots
11111111	$=$	255

i th bit of a binary number A will be denoted as A_{i}.)
The binary representation of a number that is not a power of 2 has the bits set corresponding to the powers of two that sum to the number: for example, the decimal number 6 can be expressed in terms of powers of 2 as $1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$, so it is written in binary as 110 .

An eight-digit binary number is commonly called a byte. In this text, binary numbers will usually be written as bytes (i.e. as strings of eight binary digits). For example, the binary number 101 would usually be written as 00000101 - a 101 padded on the left with five zeros, for a total of eight digits.

Whenever there is any possibility of ambiguity between decimal and binary notation, the base of the number system (which is 2 for binary, and 10 for decimal) is appended to the number as a subscript. Therefore, 101_{2} will always be interpreted as the binary representation for five, and never the decimal representation of one hundred and one (which would be written as 101_{10}).

1.1.1.1 Conversion of Binary to Decimal

To convert an unsigned binary number to a decimal number, add up the decimal values of the powers of 2 corresponding to bits which are set to 1 in the binary number. Algorithm 1.1 shows a method to do this. Some examples of conversions from binary to decimal are given in figure 1.2 .

Since there are 2^{n} unique sequences of n bits, if all the possible bit sequences of

Algorithm 1.1 To convert a binary number to decimal.

- Let X be a binary number, n digits in length, composed of bits $X_{n-1} \cdots X_{0}$.
- Let D be a decimal number.
- Let i be a counter.

1. Let $D=0$.
2. Let $i=0$.
3. While $i<n$ do:

- If $X_{i}==1$ (i.e. if bit i in X is 1), then set $D=\left(D+2^{i}\right)$.
- Set $i=(i+1)$.

Figure 1.2: Examples of Conversion from Binary to Decimal

Binary				Decimal
$00000000=0$	$=$	$=$	0	
$00000101=2^{2}+2^{0}$	$=4+2$	$=$	5	
$00000110=2^{2}+2^{1}$		$=$	6	
$00101101=2^{5}+2^{3}+2^{2}+2^{0}$	$=32+8+4+1$	$=$	45	
$10110000=2^{7}+2^{5}+2^{4}$	$=$	$128+32+16$	$=$	176

length n are used, starting from zero, the largest number will be $2^{n}-1$.

1.1.1.2 Conversion of Decimal to Binary

An algorithm for converting a decimal number to binary notation is given in algorithm 1.2.

Algorithm 1.2 To convert a positive decimal number to binary.

- Let X be an unsigned binary number, n digits in length.
- Let D be a positive decimal number, no larger than $2^{n}-1$.
- Let i be a counter.

1. Let $X=0$ (set all bits in X to 0).
2. Let $i=(n-1)$.
3. While $i \geq 0$ do:
(a) If $D \geq 2^{i}$, then

- Set $X_{i}=1$ (i.e. set bit i of X to 1).
- Set $D=\left(D-2^{i}\right)$.
(b) Set $i=(i-1)$.

1.1.1.3 Addition of Unsigned Binary Numbers

Addition of binary numbers can be done in exactly the same way as addition of decimal numbers, except that all of the operations are done in binary (base 2) rather than decimal (base 10). Algorithm 1.3 gives a method which can be used to perform binary addition.

When algorithm 1.3 terminates, if c is not 0 , then an overflow has occurred- the resulting number is simply too large to be represented by an n-bit unsigned binary number.

Algorithm 1.3 Addition of binary numbers (unsigned).

- Let A and B be a pair of n-bit binary numbers.
- Let X be a binary number which will hold the sum of A and B.
- Let c and \hat{c} be carry bits.
- Let i be a counter.
- Let s be an integer.

1. Let $c=0$.
2. Let $i=0$.
3. While $i<n$ do:
(a) Set $s=A_{i}+B_{i}+c$.
(b) Set X_{i} and \hat{c} according to the following rules:

- If $s==0$, then $X_{i}=0$ and $\hat{c}=0$.
- If $s==1$, then $X_{i}=1$ and $\hat{c}=0$.
- If $s==2$, then $X_{i}=0$ and $\hat{c}=1$.
- If $s==3$, then $X_{i}=1$ and $\hat{c}=1$.
(c) Set $c=\hat{c}$.
(d) Set $i=(i+1)$.

1.1.2 Signed Binary Numbers

The major drawback with the representation that we've used for unsigned binary numbers is that it doesn't include a way to represent negative numbers.

There are a number of ways to extend the unsigned representation to include negative numbers. One of the easiest is to add an additional bit to each number that is used to represent the sign of the number- if this bit is 1 , then the number is negative, otherwise the number is positive (or vice versa). This is analogous to the way that we write negative numbers in decimal- if the first symbol in the number is a negative sign, then the number is negative, otherwise the number is positive.

Unfortunately, when we try to adapt the algorithm for addition to work properly with this representation, this apparently simple method turns out to cause some trouble. Instead of simply adding the numbers together as we do with unsigned numbers, we now need to consider whether the numbers being added are positive or negative. If one number is positive and the other negative, then we actually need to do subtraction instead of addition, so we'll need to find an algorithm for subtraction. Furthermore, once we've done the subtraction, we need to compare the the unsigned magnitudes of the numbers to determine whether the result is positive or negative.

Luckily, there is a representation that allows us to represent negative numbers in such a way that addition (or subtraction) can be done easily, using algorithms very similar to the ones that we already have. The representation that we will use is called two's complement notation.

To introduce two's complement, we'll start by defining, in algorithm 1.4, the algorithm that is used to compute the negation of a two's complement number.

Algorithm 1.4 Negation of a two's complement number.

1. Let $\bar{x}=$ the logical complement of x.

The logical complement (also called the one's complement) is formed by flipping all the bits in the number, changing all of the 1 bits to 0 , and vice versa.
2. Let $X=\bar{x}+1$.

If this addition overflows, then the overflow bit is discarded.
By the definition of two's complement, $X \equiv-x$.

Figure 1.3 shows the process of negating several numbers. Note that the negation of zero is zero.

Figure 1.3: Examples of Negation Using Two's Complement

	$00000110=6$
1's complement11111001 Add 1	$11111010=-6$
	$11111010=-6$
	$=6$
1's complement	$00000101=0$
Add 1	$00000110=6$
	$00000000=0$
	1's complement
Add 11111111	$00000000=0$

This representation has several useful properties:

- The leftmost (most significant) bit also serves as a sign bit; if 1 , then the number is negative, if 0 , then the number is positive or zero.
- The rightmost (least significant) bit of a number always determines whether or not the number is odd or even- if bit 0 is 0 , then the number is even, otherwise the number is odd.
- The largest positive number that can be represented in two's complement notation in an n-bit binary number is $2^{n-1}-1$. For example, if $n=8$, then the largest positive number is $01111111=2^{7}-1=127$.
- Similarly, the "most negative" number is -2^{n-1}, so if $n=8$, then it is 10000000 , which is $-2^{7}=-128$. Note that the negative of the most negative number (in this case, 128) cannot be represented in this notation.

1.1.2.1 Addition and Subtraction of Signed Binary Numbers

The same addition algorithm that was used for unsigned binary numbers also works properly for two's complement numbers.

$$
\begin{array}{rlr}
00000101 & = & 5 \\
+\quad 11110101 & = & -11 \\
\hline 11111010 & = & -6
\end{array}
$$

Subtraction is also done in a similar way: to subtract A from B, take the two's complement of A and then add this number to B .

The conditions for detecting overflow are different for signed and unsigned numbers, however. If we use algorithm 1.3 to add two unsigned numbers, then if c is 1 when the addition terminates, this indicates that the result has an absolute value too large to fit the number of bits allowed. With signed numbers, however, c is not relevant, and an overflow occurs when the signs of both numbers being added are the same but the sign of the result is opposite. If the two numbers being added have opposite signs, however, then an overflow cannot occur.

For example, consider the sum of 1 and -1 :

$$
\begin{array}{rlr}
00000001 & =1 \\
+11111111 & =-1 \\
\hline 00000000 & =0 \text { Correct! }
\end{array}
$$

In this case, the addition will overflow, but it is not an error, since the result that we get (without considering the overflow) is exactly correct.

On the other hand, if we compute the sum of 127 and 1 , then a serious error occurs:

$$
\begin{array}{rlr}
01111111 & =127 \\
+00000001 & = & 1 \\
\hline 10000000 & =-128 \text { Uh-oh! }
\end{array}
$$

Therefore, we must be very careful when doing signed binary arithmetic that we take steps to detect bogus results. In general:

- If A and B are of the same sign, but $A+B$ is of the opposite sign, then an overflow or wraparound error has occurred.
- If A and B are of different signs, then $A+B$ will never overflow or wraparound.

1.1.2.2 Shifting Signed Binary Numbers

Another useful property of the two's complement notation is the ease with which numbers can be multiplied or divided by two. To multiply a number by two, simply shift the number "up" (to the left) by one bit, placing a 0 in the least significant bit. To divide a number in half, simply shift the the number "down" (to the right) by one bit (but do not change the sign bit).

Note that in the case of odd numbers, the effect of shifting to the right one bit is like dividing in half, rounded towards $-\infty$, so that 51 shifted to the right one bit becomes 25 , while -51 shifted to the right one bit becomes -26 .

00000001	$=$	1
Double 00000010	$=$	2
Halve 00000000	$=$	0
	00110011	$=$
Double 01100110	$=$	102
Halve 00011001	$=$	25
	11001101	$=-51$
Double 10011010	$=$	-102
Halve 11100110	$=$	-26

1.1.2.3 Hexadecimal Notation

Writing numbers in binary notation can soon get tedious, since even relatively small numbers require many binary digits to express. A more compact notation, called hexadecimal (base 16), is usually used to express large binary numbers. In hexadecimal, each digit represents four unsigned binary digits.

Another notation, which is not as common currently, is called octal and uses base eight to represent groups of three bits. Figure 1.4 show examples of binary, decimal, octal, and hexadecimal numbers.

For example, the number 200_{10} can be written as $11001000_{2}, \mathrm{C8}_{16}$, or 310_{8}.

Figure 1.4: Hexadecimal and Octal

Binary	0000	0001	0010	0011	0100	0101	0110	0111
Decimal	0	1	2	3	4	5	6	7
Hex	0	1	2	3	4	5	6	7
Octal	0	1	2	3	4	5	6	7

Binary	1000	1001	1010	1011	1100	1101	1110	1111
Decimal	8	9	10	11	12	13	14	15
Hex	8	9	A	B	C	D	E	F
Octal	10	11	12	13	14	15	16	17

1.2 Representing Characters

Just as sequences of bits can be used to represent numbers, they can also be used to represent the letters of the alphabet, as well as other characters.

Since all sequences of bits represent numbers, one way to think about representing characters by sequences of bits is to choose a number that corresponds to each character. The most popular correspondence currently is the ASCII character set. ASCII, which stands for the American Standard Code for Information Interchange, uses 7-bit integers to represent characters, using the correspondence shown in table 1.5.

When the ASCII character set was chosen, some care was taken to organize the way that characters are represented in order to make them easy for a computer to manipulate. For example, all of the letters of the alphabet are arranged in order, so that sorting characters into alphabetical order is the same as sorting in numerical order. In addition, different classes of characters are arranged to have useful relations. For example, to convert the code for a lowercase letter to the code for the same letter in uppercase, simply set the 6 th bit of the code to 0 (or subtract 32). ASCII is by no means the only character set to have similar useful properties, but it has emerged as the standard.

The ASCII character set does have some important limitations, however. One problem is that the character set only defines the representations of the characters used in written English. This causes problems with using ASCII to represent other written languages. In particular, there simply aren't enough bits to represent all the written characters of languages with a larger number of characters (such as Chinese

Figure 1.5: The ASCII Character Set

00 NUL	01 SOH	02 STX	03 ETX	04 EOT	05 ENQ	06 ACK	07 BEL
08 BS	09 HT	OA NL	OB VT	OC NP	OD CR	OE SO	OF SI
10 DLE	11 DC1	12 DC2	13 DC3	14 DC4	15 NAK	16 SYN	17 ETB
18 CAN	19 EM	1A SUB	1B ESC	1C FS	1D GS	1E RS	1 F US
20 SP	21 !	22	23 \#	24 \$	25 \%	26 \&	27
28 (29)		2B +	2 C	2D	2E	2F /
300	311	322	333	344	355	366	377
388	399	3A	3B	3 C <	$3 \mathrm{D}=$	3E >	3 F ?
40 @	41 A	42 B	43 C	44 D	45 E	46 F	47 G
48 H	49 I	4 A J	4B K	4C L	4D M	4E N	4F 0
50 P	51 Q	52 R	53 S	54 T	55 U	56 V	57 W
58 X	59 Y	5 A Z	5B [5C	5D]	5 E	5F
60	61 a	62 b	63 c	64 d	65 e	66 f	67 g
68 h	69 i	6A j	6B k	6C 1	6 D m	6E n	6 F
70 p	71 q	72 r	73 s		75 u	76	77
78 x	79 y	7 A z	7B \{	7 C	7D \}	7E	7F DEL

or Japanese). Already new character sets which address these problems (and can be used to represent characters of many languages side by side) are being proposed, and eventually there will unquestionably be a shift away from ASCII to a new multilanguage standard ${ }^{1}$.

1.3 Representing Programs

Just as groups of bits can be used to represent numbers, they can also be used to represent instructions for a computer to perform. Unlike the two's complement notation for integers, which is a standard representation used by nearly all computers, the representation of instructions, and even the set of instructions, varies widely from one type of computer to another.

The MIPS architecture, which is the focus of later chapters in this document, uses

[^0]a relatively simple and straightforward representation. Each instruction is exactly 32 bits in length, and consists of several bit fields, as depicted in figure 1.6.

Figure 1.6: MIPS R2000 Instruction Formats

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
Register	op	reg1	reg2	des	shift	funct
Immediate	op	reg1	reg2	16 -bit constant		
Jump	op	26 -bit constant				

The first six bits (reading from the left, or high-order bits) of each instruction are called the op field. The op field determines whether the instruction is a register, immediate, or jump instruction, and how the rest of the instruction should be interpreted. Depending on what the op is, parts of the rest of the instruction may represent the names of registers, constant memory addresses, 16 -bit integers, or other additional qualifiers for the op.

If the op field is 0 , then the instruction is a register instruction, which generally perform an arithmetic or logical operations. The funct field specifies the operation to perform, while the reg1 and reg2 represent the registers to use as operands, and the des field represents the register in which to store the result. For example, the 32-bit hexadecimal number 0x02918020 represents, in the MIPS instruction set, the operation of adding the contents of registers 20 and 17 and placing the result in register 16.

Field	op	reg1	reg2	des	shift	funct
Width	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
Values	0	20	17	16	0	add
Binary	000000	10100	10001	10000	00000	100000

If the op field is not 0 , then the instruction may be either an immediate or jump instruction, depending on the value of the op field.

1.4 Memory Organization

We've seen how sequences of binary digits can be used to represent numbers, characters, and instructions. In a computer, these binary digits are organized and ma-
nipulated in discrete groups, and these groups are said to be the memory of the computer.

1.4.1 Units of Memory

The smallest of these groups, on most computers, is called a byte. On nearly all currently popular computers a byte is composed of 8 bits.

The next largest unit of memory is usually composed of 16 bits. What this unit is called varies from computer to computer- on smaller machines, this is often called a word, while on newer architectures that can handle larger chunks of data, this is called a halfword.

The next largest unit of memory is usually composed of 32 bits. Once again, the name of this unit varies- on smaller machines, it is referred to as a long, while on newer and larger machines it is called a word.

Finally, on the newest machines, the computer also can handle data in groups of 64 bits. On a smaller machine, this is known as a quadword, while on a larger machine this is known as a long.

1.4.1.1 Historical Perspective

There have been architectures that have used nearly every imaginable word size- from 6 -bit bytes to 9 -bit bytes, and word sizes ranging from 12 bits to 48 bits. There are even a few architectures that have no fixed word size at all (such as the CM-2) or word sizes that can be specified by the operating system at runtime.

Over the years, however, most architectures have converged on 8-bit bytes and 32-bit longwords. An 8 -bit byte is a good match for the ASCII character set (which has some popular extensions that require 8 bits), and a 32 -bit word has been, at least until recently, large enough for most practical purposes.

1.4.2 Addresses and Pointers

Each unique byte ${ }^{2}$ of the computer's memory is given a unique identifier, known as its address. The address of a piece of memory is often refered to as a pointer to that

[^1]piece of memory- the two terms are synonymous, although there are many contexts where one is commonly used and the other is not.

The memory of the computer itself can often be thought of as a large array (or group of arrays) of bytes of memory. In this model, the address of each byte of memory is simply the index of the memory array location where that byte is stored.

1.4.3 Summary

In this chapter, we've seen how computers represent integers using groups of bits, and how basic arithmetic and other operations can be performed using this representation.

We've also seen how the integers or groups of bits can be used to represent several different kinds of data, including written characters (using the ASCII character codes), instructions for the computer to execute, and addresses or pointers, which can be used to reference other data.

There are also many other ways that information can be represented using groups of bits, including representations for rational numbers (usually by a representation called floating point), irrational numbers, graphics, arbitrary character sets, and so on. These topics, unfortunately, are beyond the scope of this book.

1.5 Exercises

1.5.1

Complete the following table:

Decimal	123				
Binary		01101100			
Octal			143		
Hex				3 D	
ASCII					Z

1.5.2

1. Invent an algorithm for multiplying two unsigned binary numbers. You may find it easiest to start by thinking about multiplication of decimal numbers (there are other ways as well, but you should start on familiar ground).

1.5.3

1. Invent an algorithm for dividing two unsigned binary numbers. You may find it easiest to start by thinking about long division of decimal numbers.
2. Your TF complains that the division algorithm you invented to solve the previous part of this problem is too slow. She would prefer an algorithm that gets an answer that is "reasonably close" to the right answer, but which may take considerably less time to compute. Invent an algorithm that has this property. Find the relationship between "reasonably close" and the speed of your algorithm.

Chapter 2

MIPS Tutorial

by Daniel J. Ellard

This section is a quick tutorial for MIPS assembly language programming and the SPIM environment ${ }^{1}$. This chapter covers the basics of MIPS assembly language, including arithmetic operations, simple I/O, conditionals, loops, and accessing memory.

2.1 What is Assembly Language?

As we saw in the previous chapter, computer instructions can be represented as sequences of bits. Generally, this is the lowest possible level of representation for a program- each instruction is equivalent to a single, indivisible action of the CPU. This representation is called machine language, since it is the only form that can be "understood" directly by the machine.

A slightly higher-level representation (and one that is much easier for humans to use) is called assembly language. Assembly language is very closely related to machine language, and there is usually a straightforward way to translate programs written in assembly language into machine language. (This algorithm is usually implemented by a program called the assembler.) Because of the close relationship between ma-

[^2]chine and assembly languages, each different machine architecture usually has its own assembly language (in fact, each architecture may have several), and each is unique ${ }^{2}$.

The advantage of programming in assember (rather than machine language) is that assembly language is much easier for a human to read and understand. For example, the MIPS machine language instruction for adding the contents of registers 20 and 17 and placing the result in register 16 is the integer $0 x 02918020$. This representation is fairly impenetrable; given this instruction, it is not at all obvious what it does- and even after you figure that out, it is not obvious, how to change the result register to be register 12 .

In the meanwhile, however, the MIPS assembly instruction for the same operation is:

$$
\text { add } \quad \$ 16, \$ 20, \$ 17
$$

This is much more readable- without knowing anything whatsoever about MIPS assembly language, from the add it seems likely that addition is somehow involved, and the operands of the addition are somehow related to the numbers 16,20 , and 17. A scan through the tables in the next chapter of this book confirms that add performs addition, and that the first operand is the register in which to put the sum of the registers indicated by the second and third operands. At this point, it is clear how to change the result register to 12 !

2.2 Getting Started: add.asm

To get our feet wet, we'll write an assembly language program named add.asm that computes the sum of 1 and 2 , and stores the result in register $\$ \mathrm{t} 0$.

2.2.1 Commenting

Before we start to write the executable statements of program, however, we'll need to write a comment that describes what the program is supposed to do. In the MIPS assembly language, any text between a pound sign (\#) and the subsequent newline

[^3]is considered to be a comment. Comments are absolutely essential! Assembly language programs are notoriously difficult to read unless they are properly documented. Therefore, we start by writing the following:

```
# Daniel J. Ellard -- 02/21/94
# add.asm-- A program that computes the sum of 1 and 2,
# leaving the result in register $t0.
# Registers used:
# t0 - used to hold the result.
# end of add.asm
```

Even though this program doesn't actually do anything yet, at least anyone reading our program will know what this program is supposed to do, and who to blame if it doesn't work ${ }^{3}$. We are not finished commenting this program, but we've done all that we can do until we know a little more about how the program will actually work.

2.2.2 Finding the Right Instructions

Next, we need to figure out what instructions the computer will need to execute in order to add two numbers. Since the MIPS architecture has relatively few instructions, it won't be long before you have memorized all of the instructions that you'll need, but as you are getting started you'll need to spend some time browsing through the lists of instructions, looking for ones that you can use to do what you want. Documentation for the MIPS instruction set can be found in chapter 4 of this document.

Luckily, as we look through the list of arithmetic instructions, we notice the add instruction, which adds two numbers together.

The add operation takes three operands:

1. A register that will be used to store the result of the addition. For our program, this will be $\$ \mathrm{t} 0$.
2. A register which contains the first number to be added.

Therefore, we're going to have to get 1 into a register before we can use it as an operand of add. Checking the list of registers used by this program (which

[^4]is an essential part of the commenting) we select $\$ \mathrm{t} 1$, and make note of this in the comments.
3. A register which holds the second number, or a 32 -bit constant. In this case, since 2 is a constant that fits in 32 bits, we can just use 2 as the third operand of add.

We now know how we can add the numbers, but we have to figure out how to get 1 into register $\$ \mathrm{t} 1$. To do this, we can use the li (load immediate value) instruction, which loads a 32 -bit constant into a register. Therefore, we arrive at the following sequence of instructions:

```
# Daniel J. Ellard -- 02/21/94
# add.asm-- A program that computes the sum of 1 and 2,
# leaving the result in register $t0.
# Registers used:
# t0 - used to hold the result.
# t1 - used to hold the constant 1.
    li $t1, 1 # load 1 into $t1.
    add $t0, $t1, 2 # $t0 = $t1 + 2.
# end of add.asm
```


2.2.3 Completing the Program

These two instructions perform the calculation that we want, but they do not form a complete program. Much like C, an assembly language program must contain some additional information that tells the assembler where the program begins and ends.

The exact form of this information varies from assembler to assembler (note that there may be more than one assembler for a given architecture, and there are several for the MIPS architecture). This tutorial will assume that SPIM is being used as the assembler and runtime environment.

2.2.3.1 Labels and main

To begin with, we need to tell the assembler where the program starts. In SPIM, program execution begins at the location with the label main. A label is a symbolic name for an address in memory. In MIPS assembly, a label is a symbol name (following the same conventions as C symbol names), followed by a colon. Labels must be the
first item on a line. A location in memory may have more than one label. Therefore, to tell SPIM that it should assign the label main to the first instruction of our program, we could write the following:

```
# Daniel J. Ellard -- 02/21/94
# add.asm-- A program that computes the sum of 1 and 2,
# leaving the result in register $t0.
# Registers used:
# to - used to hold the result.
# t1 - used to hold the constant 1.
main: li $t1, 1 # load 1 into $t1.
    add $t0, $t1, 2 # $t0 = $t1 + 2.
# end of add.asm
```

When a label appears alone on a line, it refers to the following memory location. Therefore, we could also write this with the label main on its own line. This is often much better style, since it allows the use of long, descriptive labels without disrupting the indentation of the program. It also leaves plenty of space on the line for the programmer to write a comment describing what the label is used for, which is very important since even relatively short assembly language programs may have a large number of labels.

Note that the SPIM assembler does not permit the names of instructions to be used as labels. Therefore, a label named add is not allowed, since there is an instruction of the same name. (Of course, since the instruction names are all very short and fairly general, they don't make very descriptive label names anyway.)

Giving the main label its own line (and its own comment) results in the following program:

```
# Daniel J. Ellard -- 02/21/94
# add.asm-- A program that computes the sum of 1 and 2,
# leaving the result in register $t0.
# Registers used:
# t0 - used to hold the result.
# t1 - used to hold the constant 1.
main: # SPIM starts execution at main.
    li $t1, 1 # load 1 into $t1.
    add $t0, $t1, 2 # $t0 = $t1 + 2.
# end of add.asm
```


2.2.3.2 Syscalls

The end of a program is defined in a very different way. Similar to C, where the exit function can be called in order to halt the execution of a program, one way to halt a MIPS program is with something analogous to calling exit in C. Unlike C, however, if you forget to "call exit" your program will not gracefully exit when it reaches the end of the main function. Instead, it will blunder on through memory, interpreting whatever it finds as instructions to execute ${ }^{4}$. Generally speaking, this means that if you are lucky, your program will crash immediately; if you are unlucky, it will do something random and then crash.

The way to tell SPIM that it should stop executing your program, and also to do a number of other useful things, is with a special instruction called a syscall. The syscall instruction suspends the execution of your program and transfers control to the operating system. The operating system then looks at the contents of register $\$ \mathrm{v} 0$ to determine what it is that your program is asking it to do.

Note that SPIM syscalls are not real syscalls; they don't actually transfer control to the UNIX operating system. Instead, they transfer control to a very simple simulated operating system that is part of the SPIM program.

In this case, what we want is for the operating system to do whatever is necessary to exit our program. Looking in table 4.6.1, we see that this is done by placing a 10 (the number for the exit syscall) into $\$ \mathrm{v0}$ before executing the syscall instruction. We can use the li instruction again in order to do this:

```
# Daniel J. Ellard -- 02/21/94
# add.asm-- A program that computes the sum of 1 and 2,
# leaving the result in register $t0.
# Registers used:
# to - used to hold the result.
# t1 - used to hold the constant 1.
# v0 - syscall parameter.
main: # SPIM starts execution at main.
    li $t1, 1 # load 1 into $t1.
    add $t0, $t1, 2 # compute the sum of $t1 and 2, and
# put it into $t0.
    li $v0, 10 # syscall code 10 is for exit.
    syscall # make the syscall.
```

[^5]```
end of add.asm
```


### 2.3 Using SPIM

At this point, we should have a working program. Now, it's time to try running it to see what happens.

To run SPIM, simply enter the command spim at the commandline. SPIM will print out a message similar to the following ${ }^{5}$ :

```
% spim
SPIM Version 5.4 of Jan. 17, 1994
Copyright 1990-1994 by James R. Larus (larus@cs.wisc.edu).
All Rights Reserved.
See the file README a full copyright notice.
Loaded: /home/usr6/cs51/de51/SPIM/lib/trap.handler
(spim)
```

Whenever you see the (spim) prompt, you know that SPIM is ready to execute a command. In this case, since we want to run the program that we just wrote, the first thing we need to do is load the file containing the program. This is done with the load command:

```
(spim) load "add.asm"
```

The load command reads and assembles a file containing MIPS assembly language, and then loads it into the SPIM memory. If there are any errors during the assembly, error messages with line number are displayed. You should not try to execute a file that has not loaded successfully- SPIM will let you run the program, but it is unlikely that it will actually work.

Once the program is loaded, you can use the run command to execute it:

```
(spim) run
```

The program runs, and then SPIM indicates that it is ready to execute another command. Since our program is supposed to leave its result in register $\$ \mathrm{t0}$, we can verify that the program is working by asking SPIM to print out the contents of $\$ \mathrm{t} 0$, using the print command, to see if it contains the result we expect:

[^6]```
(spim) print $t0
```

Reg $8=0 x 00000003$ (3)

The print command displays the register number followed by its contents in both hexadecimal and decimal notation. Note that SPIM automatically translates from the symbolic name for the register (in this case, $\$ \mathrm{t} 0$) to the actual register number (in this case, \$8).

2.4 Using syscall: add2.asm

Our program to compute $1+2$ is not particularly useful, although it does demonstrate a number of important details about programming in MIPS assembly language and the SPIM environment. For our next example, we'll write a program named add2.asm that computes the sum of two numbers specified by the user at runtime, and displays the result on the screen.

The algorithm this program will follow is:

1. Read the two numbers from the user.

We'll need two registers to hold these two numbers. We can use $\$ \mathrm{t} 0$ and $\$ \mathrm{t} 1$ for this.
2. Compute their sum.

We'll need a register to hold the result of this addition. We can use $\$ \mathrm{t} 2$ for this.
3. Print the sum.
4. Exit. We already know how to do this, using syscall.

Once again, we start by writing a comment. From what we've learned from writing add.asm, we actually know a lot about what we need to do; the rest we'll only comment for now:

```
# Daniel J. Ellard -- 02/21/94
# add2.asm-- A program that computes and prints the sum
# of two numbers specified at runtime by the user.
# Registers used:
# $t0 - used to hold the first number.
# $t1 - used to hold the second number.
# $t2 - used to hold the sum of the $t1 and $t2.
```

```
# $v0 - syscall parameter.
main:
    ## Get first number from user, put into $t0.
    ## Get second number from user, put into $t1.
    add $t2, $t0, $t1 # compute the sum.
    ## Print out $t2.
    li $v0, 10 # syscall code 10 is for exit.
    syscall # make the syscall.
# end of add2.asm.
```


2.4.1 Reading and Printing Integers

The only parts of the algorithm that we don't know how to do yet are to read the numbers from the user, and print out the sum. Luckily, both of these operations can be done with a syscall. Looking again in table 4.6.1, we see that syscall 5 can be used to read an integer into register $\$ \mathrm{v} 0$, and and syscall 1 can be used to print out the integer stored in \$a0.

The syscall to read an integer leaves the result in register $\$ \mathrm{v} 0$, however, which is a small problem, since we want to put the first number into $\$ \mathrm{tO}$ and the second into $\$ \mathrm{t} 1$. Luckily, in section 4.4.4.3 we find the move instruction, which copies the contents of one register into another.

Note that there are good reasons why we need to get the numbers out of $\$ \mathrm{v} 0$ and move them into other registers: first, since we need to read in two integers, we'll need to make a copy of the first number so that when we read in the second number, the first isn't lost. In addition, when reading through the register use guidelines (in section 4.3), we see that register \$v0 is not a recommended place to keep anything, so we know that we shouldn't leave the second number in $\$ \mathrm{v} 0$ either.

This gives the following program:

```
# Daniel J. Ellard -- 02/21/94
# add2.asm-- A program that computes and prints the sum
# of two numbers specified at runtime by the user.
# Registers used:
# $t0 - used to hold the first number.
# $t1 - used to hold the second number.
```

```
# $t2 - used to hold the sum of the $t1 and $t2.
# $v0 - syscall parameter and return value.
# $a0 - syscall parameter.
main:
```



```
# end of add2.asm.
```


2.5 Strings: the hello Program

The next program that we will write is the "Hello World" program. Looking in table 4.6.1 once again, we note that there is a syscall to print out a string. All we need to do is to put the address of the string we want to print into register \$a0, the constant 4 into $\$ \mathrm{v} 0$, and execute syscall. The only things that we don't know how to do are how to define a string, and then how to determine its address.

The string "Hello World" should not be part of the executable part of the program (which contains all of the instructions to execute), which is called the text segment of the program. Instead, the string should be part of the data used by the program, which is, by convention, stored in the data segment. The MIPS assembler allows the programmer to specify which segment to store each item in a program by the use of several assembler directives. (see 4.5.1 for more information)

To put something in the data segment, all we need to do is to put a . data before we define it. Everything between a .data directive and the next .text directive (or the end of the file) is put into the data segment. Note that by default, the assembler starts in the text segment, which is why our earlier programs worked properly even though we didn't explicitly mention which segment to use. In general, however, it is a good idea to include segment directives in your code, and we will do so from this point on.

We also need to know how to allocate space for and define a null-terminated string. In the MIPS assembler, this can be done with the .asciiz (ASCII, zero terminated string) directive. For a string that is not null-terminated, the .ascii directive can be used (see 4.5.2 for more information).

Therefore, the following program will fulfill our requirements:

```
# Daniel J. Ellard -- 02/21/94
# hello.asm-- A "Hello World" program.
# Registers used:
# $v0 - syscall parameter and return value.
# $a0 - syscall parameter-- the string to print.
    .text
main:
    la $a0, hello_msg # load the addr of hello_msg into $a0.
    li $v0,4 # 4 is the print_string syscall.
    syscall # do the syscall.
    li $v0, 10 # 10 is the exit syscall.
    syscall # do the syscall.
# Data for the program:
    .data
hello_msg: .asciiz "Hello World\n"
# end hello.asm
```

Note that data in the data segment is assembled into adjacent locations. Therefore, there are many ways that we could have declared the string "Hello World $\backslash n$ " and gotten the same exact output. For example we could have written our string as:

```
    .data
hello_msg: .ascii "Hello" # The word "Hello"
    .ascii " " # the space.
```

```
.ascii "World" # The word "World"
.ascii "\n" # A newline.
.byte 0 # a 0 byte.
```

If we were in a particularly cryptic mood, we could have also written it as:

```
    .data
hello_msg: .byte 0x48 # hex for ASCII "H"
.byte 0x65 # hex for ASCII "e"
.byte 0x6C # hex for ASCII "l"
.byte 0x6C # hex for ASCII "l"
.byte 0x6F # hex for ASCII "o"
... # and so on...
.byte 0xA # hex for ASCII newline
.byte 0x0 # hex for ASCII NUL
```

You can use the .data and .text directives to organize the code and data in your programs in whatever is most stylistically appropriate. The example programs generally have the all of the .data items defined at the end of the program, but this is not necessary. For example, the following code will assemble to exactly the same program as our original hello.asm:

```
    .text # put things into the text segment...
main:
    .data # put things into the data segment...
hello_msg: .asciiz "Hello World\n"
    .text # put things into the text segment...
    la $a0, hello_msg # load the addr of hello_msg into $a0.
    li $v0, 4 # 4 is the print_string syscall.
    syscall # do the syscall.
    li $v0, 10 # 10 is the exit syscall.
    syscall # do the syscall.
```


2.6 Conditional Execution: the larger Program

The next program that we will write will explore the problems of implementing conditional execution in MIPS assembler language. The actual program that we will write will read two numbers from the user, and print out the larger of the two.

One possible algorithm for this program is exactly the same as the one used by add2.asm, except that we're computing the maximum rather than the sum of
two numbers. Therefore, we'll start by copying add2.asm, but replacing the add instruction with a placeholder comment:

```
# Daniel J. Ellard -- 02/21/94
# larger.asm-- prints the larger of two numbers specified
# at runtime by the user.
# Registers used:
# $t0 - used to hold the first number.
# $t1 - used to hold the second number.
# $t2 - used to store the larger of $t1 and $t2.
    .text
main:
    ## Get first number from user, put into $t0.
    li $v0, 5 # load syscall read_int into $v0.
    syscall # make the syscall.
    move $t0, $v0 # move the number read into $t0.
    ## Get second number from user, put into $t1.
    li $v0, 5 # load syscall read_int into $v0.
    syscall # make the syscall.
    move $t1, $v0 # move the number read into $t1.
    ## put the larger of $t0 and $t1 into $t2.
    ## (placeholder comment)
    ## Print out $t2.
    move $a0, $t2 # move the number to print into $a0.
    li $v0, 1 # load syscall print_int into $v0.
    syscall # make the syscall.
    ## exit the program.
    li $v0, 10 # syscall code 10 is for exit.
    syscall # make the syscall.
# end of larger.asm.
```

Browsing through the instruction set again, we find in section 4.4.3.1 a description of the MIPS branching instructions. These allow the programmer to specify that execution should branch (or jump) to a location other than the next instruction. These instructions allow conditional execution to be implemented in assembler language (although in not nearly as clean a manner as higher-level languages provide).

One of the branching instructions is bgt. The bgt instruction takes three arguments. The first two are numbers, and the last is a label. If the first number is larger than the second, then execution should continue at the label, otherwise it continues at the next instruction. The b instruction, on the other hand, simply branches to the given label.

These two instructions will allow us to do what we want. For example, we could replace the placeholder comment with the following:

```
# If $t0 > $t1, branch to t0_bigger,
    bgt $t0, $t1, t0_bigger
    move $t2, $t1 # otherwise, copy $t1 into $t2.
    b endif # and then branch to endif
t0_bigger:
    move $t2, $t0 # copy $t0 into $t2
endif:
```

If $\$ \mathrm{t} 0$ is larger, then execution will branch to the t0_bigger label, where $\$ \mathrm{t} 0$ will be copied to $\$ \mathrm{t} 2$. If it is not, then the next instructions, which copy $\$ \mathrm{t} 1$ into $\$ \mathrm{t} 2$ and then branch to the endif label, will be executed.

This gives us the following program:

```
# Daniel J. Ellard -- 02/21/94
# larger.asm-- prints the larger of two numbers specified
# at runtime by the user.
# Registers used:
# $t0 - used to hold the first number.
# $t1 - used to hold the second number.
# $t2 - used to store the larger of $t1 and $t2.
# $v0 - syscall parameter and return value.
# $a0 - syscall parameter.
    .text
main:
    ## Get first number from user, put into $t0.
    li $v0, 5 # load syscall read_int into $v0.
    syscall # make the syscall.
    move $t0, $v0 # move the number read into $t0.
    ## Get second number from user, put into $t1.
    li $v0, 5 # load syscall read_int into $v0.
    syscall # make the syscall.
    move $t1, $v0 # move the number read into $t1.
```

```
    ## put the larger of $t0 and $t1 into $t2.
    bgt $t0, $t1, t0_bigger # If $t0 > $t1, branch to t0_bigger,
    move $t2, $t1 # otherwise, copy $t1 into $t2.
    b endif # and then branch to endif
t0_bigger:
    move $t2, $t0 # copy $t0 into $t2
endif:
    ## Print out $t2.
    move $a0, $t2 # move the number to print into $a0.
    li $v0, 1 # load syscall print_int into $v0.
    syscall # make the syscall.
    ## exit the program.
    li $v0, 10 # syscall code 10 is for exit.
    syscall # make the syscall.
# end of larger.asm.
```


2.7 Looping: the multiples Program

The next program that we will write will read two numbers A and B, and print out multiples of A from A to $A \times B$. The algorithm that our program will use is given in algorithm 2.1. This algorithm translates easily into MIPS assembly. Since we already know how to read in numbers and print them out, we won't bother to implement these steps here- we'll just leave these as comments for now.

```
# Daniel J. Ellard -- 02/21/94
# multiples.asm-- takes two numbers A and B, and prints out
# all the multiples of A from A to A * B.
# If B <= 0, then no multiples are printed.
# Registers used:
# $t0 - used to hold A.
# $t1 - used to hold B.
# $t2 - used to store S, the sentinel value A * B.
# $t3 - used to store m, the current multiple of A.
main:
    ## read A into $t0, B into $t1 (omitted).
```

Algorithm 2.1 The multiples program.

1. Get A from the user.
2. Get B from the user. If $B \leq 0$, terminate.
3. Set sentinel value $S=A \times B$.
4. Set multiple $m=A$.
5. Loop:
(a) Print m.
(b) If $m==S$, then go to the next step.
(c) Otherwise, set $m=m+A$, and then repeat the loop.
6. Terminate.
```
blez $t1, exit # if B <= 0, exit.
mul $t2,$t0, $t1 # S = A * B.
move $t3,$t0 # m = A
loop:
    ## print out $t3 (omitted)
    beq $t2, $t3, endloop # if m == S, we're done.
    add $t3, $t3, $t0 # otherwise, m = m + A.
    ## print a space (omitted)
    b loop
endloop:
    ## exit (omitted)
# end of multiples.asm
```

The complete code for this program is listed in section 5.3.

2.8 Loads: the palindrome.asm Program

The next program that we write will read a line of text and determine whether or not the text is a palindrome. A palindrome is a word or sentence that spells exactly the same thing both forward and backward. For example, the string "anna" is a palindrome, while "ann" is not. The algorithm that we'll be using to determine whether or not a string is a palindrome is given in algorithm 2.2.

Note that in the more common definition of a palindrome, whitespace, capitalization, and punctuation are ignored, so the string "Able was I ere I saw Elba." would be considered a palindrome, but by our definition it is not. (In exercise 2.10.2, you get to fix this oversight.)

Once again, we start with a comment:

```
## Daniel J. Ellard -- 02/21/94
## palindrome.asm -- reads a line of text and tests if it is a palindrome.
## Register usage:
## $t1 - A.
## $t2 - B.
## $t3 - the character at address A.
## $t4 - the character at address B.
## $v0 - syscall parameter / return values.
```

Algorithm 2.2 To determine if the string that starts at address S is a palindrome. This algorithm is appropriate for the strings that end with a newline followed by a 0 character, as strings read in by the read_string syscall do. (See exercise 2.10.1 to generalize this algorithm.)
Note that in this algorithm, the operation of getting the character located at address X is written as $* X$.

1. Let $A=S$.
2. Let $B=$ a pointer to the last character of S. To find the last character in S, use the following algorithm:
(a) Let $B=S$.
(b) Loop:

- If $* B==0$ (i.e. the character at address B is 0), then B has gone past the end of the string. Set $B=B-2$ (to move B back past the 0 and the newline), and continue with the next step.
- Otherwise, set $B=(B+1)$.

3. Loop:
(a) If $A \geq B$, then the string is a palindrome. Halt.
(b) If $* A \neq * B$, then the string is not a palindrome. Halt.
(c) $\operatorname{Set} A=(A+1)$.
(d) Set $B=(B-1)$.
```
## $a0 - syscall parameters.
## $a1 - syscall parameters.
```

The first step of the algorithm is to read in the string from the user. This can be done with the read_string syscall (syscall number 8), which is similar in function to the fgets function in the C standard I/O library. To use this syscall, we need to load into register $\$ \mathrm{aO}$ the pointer to the start of the memory that we have set aside to hold the string. We also need to load into register \$a1 the maximum number of bytes to read.

To set aside the space that we'll need to need to store the string, the . space directive can be used. This gives the following code:

```
    .text
main: # SPIM starts by jumping to main.
## read the string S:
    la $a0, string_space
    li $a1, 1024
    li $v0, 8 # load "read_string" code into $v0.
    syscall
    .data
string_space: .space 1024 # set aside 1024 bytes for the string.
```

Once we've got the string, then we can use algorithm 2.2 (on page 34). The first step is simple enough; all we need to do is load the address of string_space into register $\$ \mathrm{t} 1$, the register that we've set aside to represent A :
la \quad tt1, string_space $\# \mathrm{~A}=\mathrm{S}$.
The second step is more complicated. In order to compare the character pointed to by B with 0 , we need to load this character into a register. This can be done with the lb (load byte) instruction:

```
    la $t2, string_space ## we need to move B to the end
length_loop:
    lb $t3, ($t2)
    beqz $t3, end_length_loop
    addu $t2, $t2, 1
    b length_loop
end_length_loop:
    subu $t2, $t2, 2 ## subtract 2 to move B back past
# the '\0' and '\n'.
```

Note that the arithmetic done on the pointer B is done using unsigned arithmetic (using addu and subu). Since there is no way to know where in memory a pointer will point, the numerical value of the pointer may well be a "negative" number if it is treated as a signed binary number .

When this step is finished, A points to the first character of the string and B points to the last. The next step determines whether or not the string is a palindrome:

```
test_loop:
    bge $t1, $t2, is_palin # if A >= B, it's a palindrome.
    lb $t3, ($t1) # load the byte at address A into $t3,
    lb $t4, ($t2) # load the byte at address B into $t4.
    bne $t3, $t4, not_palin # if $t3 != $t4, not a palindrome.
    # Otherwise,
    addu $t1, $t1, 1 # increment A,
    subu $t2, $t2, 1 # decrement B,
    b test_loop # and repeat the loop.
```

The complete code for this program is listed in section 5.4 (on page 74).

2.9 The atoi Program

The next program that we'll write will read a line of text from the terminal, interpret it as an integer, and then print it out. In effect, we'll be reimplementing the read_int system call (which is similar to the GetInteger function in the Roberts libraries).

2.9.1 atoi-1

We already know how to read a string, and how to print out a number, so all we need is an algorithm to convert a string into a number. We'll start with the algorithm given in 2.3 (on page 37).

Let's assume that we can use register $\$ \mathrm{t} 0$ as S, register $\$ \mathrm{t} 2$ as D, and register $\$ \mathrm{t} 1$ is available as scratch space. The code for this algorithm then is simply:

li	$\$ t 2,0$	\# Initialize sum $=0$.
sum_loop:		
lb	$\$ t 1,(\$ t 0)$	\# load the byte $* S$ into $\$ \mathrm{t} 1$,
addu	$\$ t 0, \$ t 0,1$	$\#$ and increment S.

Algorithm 2.3 To convert an ASCII string representation of a integer into the corresponding integer.
Note that in this algorithm, the operation of getting the character at address X is written as $* X$.

- Let S be a pointer to start of the string.
- Let D be the number.

1. Set $D=0$.
2. Loop:
(a) If $* S=={ }^{\prime} \backslash \mathrm{n}$ ', then continue with the next step.
(b) Otherwise,
i. $S=(S+1)$
ii. $D=(D \times 10)$
iii. $D=\left(D+\left(* S-{ }^{\prime} 0^{\prime}\right)\right)$

In this step, we can take advantage of the fact that ASCII puts the numbers with represent the digits 0 through 9 are arranged consecutively, starting at 0 . Therefore, for any ASCII character x, the number represented by x is simply $x-{ }^{\prime} 0$ '.

```
    ## use 10 instead of '\n' due to SPIM bug!
    beq $t1, 10, end_sum_loop # if $t1 == \n, branch out of loop.
    mul $t2, $t2, 10 # t2 *= 10.
    sub $t1, $t1, '0' # t1 -= '0'.
    add $t2, $t2, $t1 # t2 += t1.
    b sum_loop # and repeat the loop.
end_sum_loop:
```

Note that due to a bug in the SPIM assembler, the beq must be given the constant 10 (which is the ASCII code for a newline) rather than the symbolic character code ' $\backslash \mathrm{n}$ ', as you would use in C. The symbol ' $\backslash \mathrm{n}$ ' does work properly in strings declarations (as we saw in the hello.asm program).

A complete program that uses this code is in atoi-1.asm.

2.9.2 atoi-2

Although the algorithm used by atoi-1 seems reasonable, it actually has several problems. The first problem is that this routine cannot handle negative numbers. We can fix this easily enough by looking at the very first character in the string, and doing something special if it is a ' ${ }^{\prime}$ '. The easiest thing to do is to introduce a new variable, which we'll store in register $\$ \mathrm{t} 3$, which represents the sign of the number. If the number is positive, then $\$ \mathrm{t} 3$ will be 1 , and if negative then $\$ \mathrm{t} 3$ will be -1 . This makes it possible to leave the rest of the algorithm intact, and then simply multiply the result by $\$ \mathrm{t} 3$ in order to get the correct sign on the result at the end:

```
    li $t2, 0 # Initialize sum = 0.
get_sign:
    li $t3, 1
    lb $t1, ($t0) # grab the "sign"
    bne $t1, '-', positive # if not "-", do nothing.
    li $t3, -1 # otherwise, set t3 = -1, and
    addu $t0, $t0, 1 # skip over the sign.
positive:
sum_loop:
    ## sum_loop is the same as before.
```

```
end_sum_loop:
```

```
    mul $t2, $t2, $t3 # set the sign properly.
```

A complete program that incorporates these changes is in atoi-2.asm.

2.9.3 atoi-3

While the algorithm in atoi-2.asm is better than the one used by atoi-1.asm, it is by no means free of bugs. The next problem that we must consider is what happens when S does not point to a proper string of digits, but instead points to a string that contains erroneous characters.

If we want to mimic the behavior of the UNIX atoi library function, then as soon as we encounter any character that isn't a digit (after an optional '-') then we should stop the conversion immediately and return whatever is in D as the result. In order to implement this, all we need to do is add some extra conditions to test on every character that gets read in inside sum_loop:

```
sum_loop:
    lb $t1, ($t0) # load the byte *S into $t1,
    addu $t0, $t0, 1 # and increment S,
        ## use 10 instead of '\n' due to SPIM bug!
        beq $t1, 10, end_sum_loop # if $t1 == \n, branch out of loop.
        blt $t1, '0', end_sum_loop # make sure 0 <= t1
        bgt $t1, '9', end_sum_loop # make sure 9 >= t1
        mul $t2, $t2, 10 # t2 *= 10.
        sub $t1, $t1, '0' # t1 -= '0'.
        add $t2, $t2, $t1 # t2 += t1.
        b sum_loop # and repeat the loop.
end_sum_loop:
```

A complete program that incorporates these changes is in atoi-3.asm.

2.9.4 atoi-4

While the algorithm in atoi-3.asm is nearly correct (and is at least as correct as the one used by the standard atoi function), it still has an important bug. The problem
is that algorithm 2.3 (and the modifications we've made to it in atoi-2.asm and atoi-3.asm) is generalized to work with any number. Unfortunately, register \$t2, which we use to represent D, can only represent 32 -bit binary number. Although there's not much that we can do to prevent this problem, we definitely want to detect this problem and indicate that an error has occurred.

There are two spots in our routine where an overflow might occur: when we multiply the contents of register $\$ \mathrm{t} 2$ by 10 , and when we add in the value represented by the current character.

Detecting overflow during multiplication is not hard. Luckily, in the MIPS architecture, when multiplication and division are performed, the result is actually stored in two 32 -bit registers, named lo and hi. For division, the quotient is stored in lo and the remainder in hi. For multiplication, lo contains the low-order 32 bits and hi contains the high-order 32 bits of the result. Therefore, if hi is non-zero after we do the multiplication, then the result of the multiplication is too large to fit into a single 32 -bit word, and we can detect the error.

We'll use the mult instruction to do the multiplication, and then the mfhi (move from hi) and mflo (move from lo) instructions to get the results.

To implement this we need to replace the single line that we used to use to do the multiplication with the following:

```
Note-- $t4 contains the constant 10.
mult $t2, $t4 # multiply $t2 by 10.
mfhi $t5 # check for overflow;
bnez $t5, overflow # if so, then report an overflow.
mflo $t2 # get the result of the multiply
```

There's another error that can occur here, however: if the multiplication makes the number too large to be represented as a positive two's complement number, but not quite large enough to require more than 32 bits. (For example, the number 3000000000 will be converted to -1294967296 by our current routine.) To detect whether or not this has happened, we need to check whether or not the number in register $\$ \mathrm{t} 2$ appears to be negative, and if so, indicate an error. This can be done by adding the following instruction immediately after the mflo:

```
blt $t2, $0, overflow # make sure that it isn't negative.
```

This takes care of checking that the multiplication didn't overflow. We can detect whether an addition overflowed in much the same manner, by adding the same test immediately after the addition.

The resulting code, along with the rest of the program, can be found in section 5.6 (on page 78).

2.10 Exercises

2.10.1

In the palindrome algorithm 2.2, the algorithm for moving B to the end of the string is incorrect if the string does not end with a newline.

Fix algorithm 2.2 so that it behaves properly whether or not there is a newline on the end of the string. Once you have fixed the algorithm, fix the code as well.

2.10.2

Modify the palindrome.asm program so that it ignores whitespace, capitalization, and punctuation.

Your program must be able to recognize the following strings as palindromes:

1. "12321"
2. "Madam, I'm Adam."
3. "Able was I, ere I saw Elba."
4. "A man, a plan, a canal- Panama!"
5. "Go hang a salami; I'm a lasagna hog."

2.10 .3

Write a MIPS assembly language program that asks the user for 20 numbers, bubblesorts them, and then prints them out in ascending order.

Chapter 3

Advanced MIPS Tutorial

by Daniel J. Ellard

This chapter continues the tutorial for MIPS assembly language programming and the SPIM environment ${ }^{1}$. This chapter introduces more advanced topics, such as how functions and advanced data structures can be implemented in MIPS assembly language.

3.1 Function Environments and Linkage

One of the most important benefits of a high-level language such as C is the notion of a function. In C, a function provides several useful abstractions:

- The mapping of actual parameters to formal parameters.
- Allocation and initialization of temporary local storage. This is particularly important in languages which allow recursion: each call to the function must get its own copy of any local variables, to prevent one call to a recursive function from clobbering the values of a surrounding call to the same function.

[^7]The information that describes the state of a function during execution (i.e. the actual parameters, the value of all of the local variables, and which statement is being executed) is called the environment of the function. (Note that the values of any global variables referenced by the function are not part of the environment.) For a MIPS assembly program, the environment of a function consists of the values of all of the registers that are referenced in the function (see exercise 3.3.1).

In order to implement the ability to save and restore a function's environment, most architectures, including the MIPS, use the stack to store each of the environments.

In general, before a function A calls function B, it pushes its environment onto the stack, and then jumps to function B. When the function B returns, function A restores its environment by popping it from the stack. In the MIPS software architecture, this is accomplished with the following procedure:

1. The caller must:
(a) Put the parameters into $\$ \mathrm{a} 0-\$ \mathrm{a} 3$. If there are more than four parameters, the additional parameters are pushed onto the stack.
(b) Save any of the caller-saved registers (\$t0 - \$t9) which are used by the caller.
(c) Execute a jal (or jalr) to jump to the function.
2. The callee must, as part of the function preamble:
(a) Create a stack frame, by subtracting the frame size from the stack pointer (\$sp).
Note that the minimum stack frame size in the MIPS software architecture is 32 bytes, so even if you don't need all of this space, you should still make your stack frames this large.
(b) Save any callee-saved registers ($\$ \mathbf{s} 0-\$ s 7, \$ f p, \$ r a$) which are used by the callee. Note that the frame pointer ($\$ \mathrm{fp}$) must always be saved. The return address (\$ra) needs to be saved only by functions which make function calls themselves.
(c) Set the frame pointer to the stack pointer, plus the frame size.
3. The callee then executes the body of the function.
4. To return from a function, the callee must:
(a) Put the return value, if any, into register $\$ \mathrm{vo}$.
(b) Restore callee-saved registers.
(c) Jump back to \$ra, using the jr instruction.
5. To clean up after a function call, the caller must:
(a) Restore the caller-saved registers.
(b) If any arguments were passed on the stack (instead of in \$a0-\$a3), pop them off of the stack.
(c) Extract the return value, if any, from register \$v0.

The convention used by the programs in this document is that a function stores $\$ \mathrm{fp}$ at the top of its stack frame, followed by $\$$ ra, then any of the callee-saved registers (\$s0-\$s7), and finally any of the caller-saved registers (\$t0-\$t9) that need to be preserved.

3.1.1 Computing Fibonacci Numbers

The Fibonacci sequence has the following recursive definition: let $F(n)$ be the nth element (where $n \geq 0$) in the sequence:

- If $n<2$, then $F(n) \equiv 1$. (the base case)
- Otherwise, $F(n)=F(n-1)+F(n-2)$. (the recursive case)

This definition leads directly to a recursive algorithm for computing the nth Fibonacci number. As you may have realized, particularly if you've seen this sequence before, there are much more efficient ways to compute the nth Fibonacci number. Nevertheless, this algorithm is often used to demonstrate recursion- so here we go again.

In order to demonstrate a few different aspects of the MIPS function calling conventions, however, we'll implement the fib function in a few different ways.

3.1.1.1 Using Saved Registers: fib-s.asm

The first way that we'll code this will use callee-saved registers to hold all of the local variables.

```
# fib-- (callee-save method)
# Registers used:
# $a0 - initially n.
# $s0 - parameter n.
# $s1 - fib (n - 1).
# $s2 - fib (n - 2).
    .text
fib:
    subu $sp, $sp, 32 # frame size = 32, just because...
    sw $ra, 28($sp) # preserve the Return Address.
    sw $fp, 24($sp) # preserve the Frame Pointer.
    sw $s0, 20($sp) # preserve $s0.
    sw $s1, 16($sp) # preserve $s1.
    sw $s2, 12($sp) # preserve $s2.
    addu $fp, $sp, 32 # move Frame Pointer to base of frame.
    move $s0, $a0 # get n from caller.
    blt $s0, 2, fib_base_case # if n < 2, then do base case.
    sub $a0, $s0, 1 # compute fib (n - 1)
    jal fib #
    move $s1, $v0 # s1 = fib (n - 1).
    sub $a0, $s0, 2 # compute fib (n - 2)
    jal fib
    move $s2, $v0 # $s2 = fib (n - 2).
    add $v0, $s1, $s2 # $v0 = fib (n - 1) + fib (n - 2).
    b fib_return
fib_base_case: # in the base case, return 1.
    li $v0, 1
fib_return:
    lw $ra, 28($sp) # restore the Return Address.
    lw $fp, 24($sp) # restore the Frame Pointer.
    lw $s0, 20($sp) # restore $s0.
    lw $s1, 16($sp) # restore $s1.
    lw $s2, 12($sp) # restore $s2.
    addu $sp, $sp, 32 # restore the Stack Pointer.
    jr $ra # return.
```

As a baseline test, let's time the execution of this program computing the $F(20)$:

```
% echo 20 | /bin/time spim -file fib-s.asm
SPIM Version 5.4 of Jan. 17, 1994
Copyright 1990-1994 by James R. Larus (larus@cs.wisc.edu).
All Rights Reserved.
See the file README a full copyright notice.
Loaded: /home/usr6/cs51/de51/SPIM/lib/trap.handler
10946
```

5.1 real
4.8 user
0.2 sys

3.1.1.2 Using Temporary Registers: fib-t.asm

If you trace through the execution of the fib function in fib-s.asm, you'll see that roughly half of the function calls are leaf calls. Therefore, it is often unnecessary to go to all of the work of saving all of the registers in each call to fib, since half the time fib doesn't call itself again. We can take advantage of this fact by using caller saved registers (in this case $\$ \mathrm{t0}-\$ \mathrm{t} 2$) instead of callee saved registers. Since it is the responsibility of the caller to save these registers, the code gets somewhat rearranged:

```
# fib-- (caller-save method)
# Registers used:
# $a0 - initially n.
# $t0 - parameter n.
# $t1 - fib (n - 1).
# $t2 - fib (n - 2).
fib:
    subu $sp, $sp, 32 # frame size = 32, just because...
    sw $ra, 28($sp) # preserve the Return Address.
    sw $fp, 24($sp) # preserve the Frame Pointer.
    addu $fp, $sp, 32 # move Frame Pointer to base of frame.
    move $t0, $a0 # get n from caller.
    blt $t0, 2, fib_base_case # if n < 2, then do base case.
# call function fib (n - 1):
# save n.
# compute fib (n - 1)
# $t1 = fib (n - 1)
# restore n.
# call function fib (n - 2);
    sw $t0, 20($sp) # save n.
```

```
    sw $t1, 16($sp) # save $t1.
    sub $a0, $t0, 2 # compute fib (n - 2)
    jal fib
    move $t2, $v0 # $t2 = fib (n - 2)
    lw $t0, 20($sp) # restore n.
    lw $t1, 16($sp) # restore $t1.
    add $v0, $t1, $t2 # $v0 = fib (n - 1) + fib (n - 2).
    b fib_return
fib_base_case: # in the base case, return 1.
fib_return:
\begin{tabular}{lll} 
lw & \$ra, 28(\$sp) & \# Restore the Return Address. \\
lw & \$fp, 24(\$sp) & \# restore the Frame Pointer. \\
addu & \$sp, \$sp, 32 & \# restore the Stack Pointer. \\
jr & \$ra & \# return.
\end{tabular}
```

Once again, we can time the execution of this program in order to see if this change has made any improvement:

```
% echo 20 | /bin/time spim -file fib-t.asm
SPIM Version 5.4 of Jan. 17, 1994
Copyright 1990-1994 by James R. Larus (larus@cs.wisc.edu).
All Rights Reserved.
See the file README a full copyright notice.
Loaded: /home/usr6/cs51/de51/SPIM/lib/trap.handler
10946
```

4.5 real
4.1 user
0.1 sys

In these tests, the user time is what we want to measure, and as we can see, fib-s.asm is approximately 17% slower than fib-t.asm.

3.1.1.3 Optimization: fib-o.asm

Warning! Hacks ahead! There are still more tricks we can try in order to increase the performance of this program. Of course, the best way to increase the performance of this program would be to use a better algorithm, but for now we'll concentrate on optimizing our assembly implementation of the algorithm we've been using.

Starting with the observation that about half the calls to fib have an argument n of 1 or 0 , and therefore do not need to do anything except return a 1 , we can simplify the program considerably: this base case doesn't require building a stack frame, or
using any registers except $\$ \mathrm{a} 0$ and $\$ \mathrm{v} 0$. Therefore, we can postpone the work of building a stack frame until after we've tested to see if we're going to do the base case.

In addition, we can further trim down the number of instructions that are executed by saving fewer registers. For example, in the second recursive call to fib it is not necessary to preserve n - we don't care if it gets clobbered, since it isn't used anywhere after this call.

```
## fib-- (hacked-up caller-save method)
## Registers used:
## $a0 - initially n.
## $t0 - parameter n.
## $t1 - fib (n - 1).
## $t2 - fib (n - 2).
    .text
fib:
    bgt $a0, 1, fib_recurse # if n < 2, then just return a 1,
    li $vO, 1 # don't bother to build a stack frame.
    jr $ra
fib_recurse: # the recursive case:
    subu $sp, $sp, 32 # frame size = 32, just because...
    sw $ra, 28($sp) # preserve the Return Address.
    sw $fp, 24($sp) # preserve the Frame Pointer.
    addu $fp,$sp, 32 # move Frame Pointer to base of frame.
    move $t0, $a0 # get n from caller.
    SW $t0, 20($sp) # preserve n.
    sub $a0, $t0, 1 # compute fib (n - 1)
    jal fib
    move $t1, $v0 # t1 = fib (n - 1)
    lw $t0, 20($sp) # restore n.
    Sw $t1, 16($sp) # preserve $t1.
    sub $a0, $t0, 2 # compute fib (n - 2)
    jal fib
    move $t2, $v0 # t2 = fib (n - 2)
    lw $t1, 16($sp) # restore $t1.
    add $v0, $t1, $t2 # $v0 = fib (n - 1) + fib (n - 2)
```

```
lw $ra, 28($sp) # restore Return Address.
lw $fp, 24($sp) # restore Frame Pointer.
addu $sp, $sp, 32 # restore Stack Pointer.
jr $ra # return.
```

Let's time this and see how it compares:

```
% echo 20 | /bin/time spim -file fib-o.asm
SPIM Version 5.4 of Jan. 17, 1994
Copyright 1990-1994 by James R. Larus (larus@cs.wisc.edu).
All Rights Reserved.
See the file README a full copyright notice.
Loaded: /home/usr6/cs51/de51/SPIM/lib/trap.handler
10946
    3.1 real 2.8 user 0.2 sys
```

This is clearly much faster. In fact, it's nearly twice as fast as the original fib-s.asm. This makes sense, since we have eliminated building and destroying about half of the stack frames, and a large percentage of the fib function does nothing but set up and dismantle the stack frame.

Note that the reason that optimizing the base case of the recursion helps so much with this algorithm is because it occurs about half of the time- but this is not characteristic of all recursive algorithms. For example, in a recursive algorithm to compute the factorial of n, the recursive case will occur about $n-1$ times, while the base case will only occur once. Therefore, it makes more sense to optimize the recursive case in that situation.

There's still more that can be done, however; see exercise 3.3.3 to pursue this farther. A complete listing of a program that uses this implementation of the fib function can be found in section 5.8 (on page 84).

3.2 Structures and sbrk: the treesort Program

Included in section 5.9 of this document is the source code for a SPIM program that reads a list of numbers from the user and prints out the list in ascending order. The input is read one number per line, using the read_int syscall, until the user types in the sentinel value. The sentinel value is currently 0 , but can be changed in the code to any 32 -bit integer.

The treesort algorithm should be familiar to anyone who has used ordered binary trees. The general algorithm is shown in 3.1.

Algorithm 3.1 The treesort algorithm.

1. Build an ordered binary tree T containing all the values to be sorted.
2. Do an inorder traversal of T, printing out the values of each node.

Since we already have seen how to write functions (including recursive functions), doing the inorder traversal won't be much of a problem. Building the tree, however, will require several new techniques: we need to learn how to represent structures (in particular the structure of each node), and we need to learn how to dynamically allocate memory, so we can construct binary trees of arbitrary size.

3.2.1 Representing Structures

In C, we would use a definition such as the the following for our tree node structures:

```
typedef struct _tree_t {
    int val; /* the value of this node. */
    struct _tree_t *left; /* pointer to the left child. */
    struct _tree_t *right; /* pointer to the right child. */
} tree_t;
```

We'd complete our definition of this representation by specifying that a NULL pointer will be used as the value of the left field when the node does not have a left child, and as the value of right field when the node does not have a right child.

In assembly language, unfortunately, we need to deal with things on a lower level ${ }^{2}$. If we take a look at this structure, we note that in the MIPS architecture it will require exactly three words (twelve bytes) to represent this structure: a word to represent the val, another for the left pointer, and the last for the right pointer (in the MIPS R2000 architecture, a pointer is 32 bits in length, so it will fit in a single word. This is not necessarily the case for other architectures, however.). Therefore, we can use a three-word chunk of memory to represent a node, as long as we keep track of what each word in the chunk represents. For example,

[^8]| \# | MIPS assembly: | | C equivalent: |
| :---: | :---: | :---: | :---: |
| | 1w | \$s0, 0 (\$t1) | \# $\mathrm{a}=$ foo->val; |
| | 1w | \$s1, 4(\$t1) | \# b = foo->left; |
| | 1w | \$s2, 8(\$t1) | \# c = foo->right; |
| | SW | \$s0, 0 (\$t1) | \# foo->val = a; |
| | SW | \$s1, 4(\$t1) | \# foo->left $=\mathrm{b}$; |
| | SW | \$s2, 8(\$t1) | \# foo->right $=c$; |

Needless to say, once you choose a representation you must fully comment it in your code. In addition, any functions or routines that depend on the details of a structure representation should mention this fact explicitly, so that if you change the representation later you'll know exactly which functions you will also need to change.

3.2.2 The sbrk syscall

Now that we've solved the problem of representing structures, we need to solve the problem of how to dynamically allocate them. Luckily, there is a syscall named sbrk that can be used to allocate memory (see section 4.6.1).

Unfortunately, sbrk behaves much more like its namesake (the UNIX sbrk system call) than like malloc-it extends the data segment by the number of bytes requested, and then returns the location of the previous end of the data segment (which is the start of the freshly allocated memory). The problem with sbrk is that it can only be used to allocate memory, never to give it back.

3.3 Exercises

3.3.1

In section 3.1, a function's environment is defined to be the values of all of the registers that are referenced in the function. If we use this definition, we may include more registers than are strictly necessary. Write a more precise definition, which may in some cases include fewer registers.

3.3.2

Write a MIPS assembly language program named fib-iter .asm that asks the user for n, and then computes and prints the nth Fibonacci sequence using an $O(n)$ iterative algorithm.

3.3.3

The fib-o.asm program (shown in 3.1.1.3) is not completely optimized.

1. Find at least one more optimization, and time your resulting program to see if it is faster than fib-o.asm. Call your program fib-o+.asm.
2. Since you know that fib will never call any function other than fib, can you make use of this to optimize the calling convention for this particular function? You should be able discover (at least) two instructions in fib that are not necessary. With some thought, you may be able to find others.
Design a calling convention optimized for the fib program, and write a program named fib-o++. asm that implements it. Time your resulting program and see how much faster it is than fib-o.asm and your fib-o+.asm program.
3. Time the program from question 3.3.2 and compare times with fib-o.asm, fib-o+.asm, and fib-o++.asm. What conclusion do you draw from your results?

3.3.4

Starting with the routine from atoi-4.asm, write a MIPS assembly language function named atoi that behaves in the same manner as the atoi function in the C library.

Your function must obey the MIPS calling conventions, so that it can be used in any program. How should your function indicate to its caller that an overflow has occurred?

3.3.5

Write a MIPS assembly language program that asks the user for 20 numbers, mergesorts them, and then prints them out in ascending order.

Chapter 4

The MIPS R2000 Instruction Set

by Daniel J. Ellard

4.1 A Brief History of RISC

In the beginning of the history of computer programming, there were no high-level languages. All programming was initially done in the native machine language and later the native assembly language of whatever machine was being used.

Unfortunately, assembly language is almost completely nonportable from one architecture to another, so every time a new and better architecture was developed, every program anyone wanted to run on it had to be rewritten almost from scratch. Because of this, computer architects tried hard to design systems that were backwardcompatible with their previous systems, so that the new and improved models could run the same programs as the previous models. For example, the current generation of PC-clones are compatible with their 1982 ancestors, and current IBM 390-series machines will run the same software as the legendary IBM mainframes of the 1960's.

To make matters worse, programming in assembly language is time-consuming and difficult. Early software engineering studies indicated that programmers wrote about as many lines of code per year no matter what language they used. Therefore, a programmer who used a high-level language, in which a single line of code was equivalent to five lines of assembly language code, could be about five times more productive than a programmer working in assembly language. It's not surprising, therefore, that a great deal of energy has been devoted to developing high-level languages where a single statement might represent dozens of lines of assembly language, and will run
without modification on many different computers.
By the mid-1980s, the following trends had become apparent:

- Few people were doing assembly language programming any longer if they could possibly avoid it.
- Compilers for high-level languages only used a fraction of the instructions available in the assembly languages of the more complex architectures.
- Computer architects were discovering new ways to make computers faster, using techniques that would be difficult to implement in existing architectures.

At various times, experimental computer architectures that took advantage of these trends were developed. The lessons learned from these architectures eventually evolved into the RISC (Reduced Instruction Set Computer) philosophy.

The exact definition of RISC is difficult to state ${ }^{1}$, but the basic characteristic of a RISC architecture, from the point of view of an assembly language programmer, is that the instruction set is relatively small and simple compared to the instruction sets of more traditional architectures (now often referred to as CISC, or Complex Instruction Set Computers).

The MIPS architecture is one example of a RISC architecture, but there are many others.

4.2 MIPS Instruction Set Overview

In this and the following sections we will give details of the MIPS architecture and SPIM environment sufficient for many purposes. Readers who want even more detail should consult SPIM S20: A MIPS R2000 Simulator by James Larus, Appendix A, Computer Organization and Design by David Patterson and John Hennessy (this appendix is an expansion of the SPIM S20 document by James Larus), or MIPS R2000 RISC Architecture by Gerry Kane.

The MIPS architecture is a register architecture. All arithmetic and logical operations involve only registers (or constants that are stored as part of the instructions). The MIPS architecture also includes several simple instructions for loading data from memory into registers and storing data from registers in memory; for this reason, the

[^9]MIPS architecture is called a load/store architecture. In a load/store (or load and store) architecture, the only instructions that can access memory are the load and store instructions- all other instructions access only registers.

4.3 The MIPS Register Set

The MIPS R2000 CPU has 32 registers. 31 of these are general-purpose registers that can be used in any of the instructions. The last one, denoted register zero, is defined to contain the number zero at all times.

Even though any of the registers can theoretically be used for any purpose, MIPS programmers have agreed upon a set of guidelines that specify how each of the registers should be used. Programmers (and compilers) know that as long as they follow these guidelines, their code will work properly with other MIPS code.

Symbolic Name	Number	Usage
zero	0	Constant 0.
at	1	Reserved for the assembler.
v0 - v1	$2-3$	Result Registers.
a0 - a3	$4-7$	Argument Registers $1 \cdots 4$.
t0 -t 9	$8-15,24-25$	Temporary Registers $0 \cdots 9$.
s0 - 7	$16-23$	Saved Registers $0 \cdots 7$.
k0 - k1	$26-27$	Kernel Registers $0 \cdots 1$.
gp	28	Global Data Pointer.
sp	29	Stack Pointer.
fp	30	Frame Pointer.
ra	31	Return Address.

4.4 The MIPS Instruction Set

This section briefly describes the MIPS assembly language instruction set. In the description of the instructions, the following notation is used:

- If an instruction description begins with an \circ, then the instruction is not a member of the native MIPS instruction set, but is available as a pseudoinstruction. The assembler translates pseudoinstructions into one or more native instructions (see section 4.7 and exercise 4.8 .1 for more information).
- If the op contains a (u), then this instruction can either use signed or unsigned arithmetic, depending on whether or not a u is appended to the name of the instruction. For example, if the op is given as add (u), then this instruction can either be add (add signed) or addu (add unsigned).
- des must always be a register.
- src1 must always be a register.
- reg2 must always be a register.
- $\operatorname{src} 2$ may be either a register or a 32 -bit integer.
- $a d d r$ must be an address. See section 4.4.4 for a description of valid addresses.

4.4.1 Arithmetic Instructions

Op	Operands	Description
\bigcirc abs	des, src1	des gets the absolute value of src1.
add (u)	des, src1, src2	des gets src1 + src2.
and	des, src1, src2	des gets the bitwise and of src1 and src2.
$\begin{array}{r} \quad \operatorname{div}(u) \\ \circ \quad \operatorname{div}(u) \end{array}$	src1, reg2 des, src1, src2	Divide src1 by reg2, leaving the quotient in register lo and the remainder in register hi. des gets src1 / srcz.
\circ mul \circ mulo mult (u)	des, src1, src2 des, src1, src2 src1, reg2	des gets src1 \times src2. des gets src $1 \times$ src2, with overflow. Multiply src1 and reg2, leaving the low-order word in register lo and the high-order word in register hi.
- neg(u)	des, src1	des gets the negative of src1.
nor	des, src1, src2	des gets the bitwise logical nor of src1 and src2.
\bigcirc not	des, src1	des gets the bitwise logical negation of src1.
or	des, src1, src2	des gets the bitwise logical or of src1 and src2.
- rem(u)	des, src1, src2	des gets the remainder of dividing src1 by src2.
$\begin{array}{ll} \hline \circ & \text { rol } \\ \circ & \text { ror } \end{array}$	des, src1, src2 des, src1, src2	des gets the result of rotating left the contents of src1 by src2 bits. des gets the result of rotating right the contents of src1 by src2 bits.
sll	des, src1, src2	des gets src1 shifted left by src2 bits.
sra	des, src1, src2	Right shift arithmetic.
srl	des, src1, src2	Right shift logical.
sub (u)	des, src1, src2	des gets src1-src2.
xor	des, src1, src2	des gets the bitwise exclusive or of src1 and src2.

4.4.2 Comparison Instructions

Op	Operands	Description
- seq	des, src1, src2	des $\leftarrow 1$ if $\operatorname{src} 1=s r c 2,0$ otherwise.
sne	des, src1, src2	des $\leftarrow 1$ if $\operatorname{src} 1 \neq s r c 2,0$ otherwise.
- sge(u)	des, src1, src2	des $\leftarrow 1$ if $\operatorname{src} 1 \geq \operatorname{src} 2,0$ otherwise.
- sgt(u)	des, src1, src2	des $\leftarrow 1$ if $\operatorname{src} 1>\operatorname{src} 2,0$ otherwise.
- sle(u)	des, src1, src2	des $\leftarrow 1$ if $\operatorname{src} 1 \leq s r c 2,0$ otherwise.
stl(u)	des, src1, src2	des $\leftarrow 1$ if $\operatorname{src} 1<\operatorname{src} 2,0$ otherwise.

4.4.3 Branch and Jump Instructions

4.4.3.1 Branch

Op	Operands	Description
b	lab	Unconditional branch to lab.
beq	src1, src2, lab	Branch to lab if src1 $\equiv s r c 2$.
bne	src1, src2, lab	Branch to lab if src $1 \neq \operatorname{src} 2$.
- bge(u)	src1, src2, lab	Branch to lab if src1 \geq src2.
- bgt(u)	src1, src2, lab	Branch to lab if src1 $>$ src2.
- ble(u)	src1, src2, lab	Branch to lab if $\operatorname{src} 1 \leq \operatorname{src} 2$.
- blt(u)	src1, src2, lab	Branch to lab if src1<src2.
- beqz	src1, lab	Branch to lab if src1 $\equiv 0$.
- bnez	src1, lab	Branch to lab if src $1 \neq 0$.
bgez	src1, lab	Branch to lab if src $1 \geq 0$.
bgtz	src1, lab	Branch to lab if src $1>0$.
blez	src1, lab	Branch to lab if src1 ≤ 0.
bltz	src1, lab	Branch to lab if src1<0.
bgezal	src1, lab	If $\operatorname{src} 1 \geq 0$, then put the address of the next instruction into \$ra and branch to lab.
bgtzal	src1, lab	If $\operatorname{src} 1>0$, then put the address of the next instruction into \$ra and branch to lab.
bltzal	src1, lab	If $\operatorname{src} 1<0$, then put the address of the next instruction into $\$$ ra and branch to lab.

4.4.3.2 Jump

Op	Operands	Description
j	label	Jump to label lab.
jr	src1	Jump to location src1.

4.4.4 Load, Store, and Data Movement

The second operand of all of the load and store instructions must be an address. The MIPS architecture supports the following addressing modes:

	Format	Meaning
\circ	(reg)	Contents of reg.
\circ	const	A constant address.
	const $($ reg $)$	const + contents of reg.
\circ	symbol	The address of symbol.
\circ	symbol + const	The address of symbol + const.
\circ	symbol + const $($ reg $)$	The address of symbol + const + contents of reg.

4.4.4.1 Load

The load instructions, with the exceptions of li and lui, fetch a byte, halfword, or word from memory and put it into a register. The li and lui instructions load a constant into a register.

All load addresses must be aligned on the size of the item being loaded. For example, all loads of halfwords must be from even addresses, and loads of words from addresses cleanly divisible by four. The ulh and ulw instructions are provided to load halfwords and words from addresses that might not be aligned properly.

	Op	Operands	Description
\bigcirc	la	des, addr	Load the address of a label.
	lb(u)	des, addr	Load the byte at $a d d r$ into des.
	lh(u)	des, addr	Load the halfword at $a d d r$ into des.
-	li	des, const	Load the constant const into des.
	lui	des, const	Load the constant const into the upper halfword of des, and set the lower halfword of des to 0 .
	1w	des, addr	Load the word at addr into des.
	lwl	des, addr	
	lwr	des, addr	
-	ulh(u)	des, addr	Load the halfword starting at the (possibly unaligned) address addr into des.
	ulw	des, addr	Load the word starting at the (possibly unaligned) address addr into des.

4.4.4.2 Store

The store instructions store a byte, halfword, or word from a register into memory.
Like the load instructions, all store addresses must be aligned on the size of the item being stored. For example, all stores of halfwords must be from even addresses, and loads of words from addresses cleanly divisible by four. The swl, swr, ush and usw instructions are provided to store halfwords and words to addresses which might not be aligned properly.

Op	Operands	Description
sb	$\operatorname{src1}, a d d r$	Store the lower byte of register src1 to addr.
sh	$\operatorname{src1}, a d d r$	Store the lower halfword of register src1 to addr.
sw	$\operatorname{src} 1, a d d r$	Store the word in register src1 to addr.
sw1	$\operatorname{src1}, a d d r$	Store the upper halfword in src to the (possibly un- aligned) address addr.
swr	$\operatorname{src1}, a d d r$	Store the lower halfword in src to the (possibly unaligned) address addr. Store the lower halfword in src to the (possibly unaligned) address addr. Store the word in src to the (possibly unaligned) address $a d d r$.

4.4.4.3 Data Movement

The data movement instructions move data among registers. Special instructions are provided to move data in and out of special registers such as hi and lo.

Op	Operands	Description
\circ	move	des, src1

4.4.5 Exception Handling

Op Operands	Description
rfe	Return from exception.
syscall	Makes a system call. See 4.6.1 for a list of the SPIM system calls.
break const	Used by the debugger.
nop	An instruction which has no effect (other than taking a cycle to execute).

4.5 The SPIM Assembler

4.5.1 Segment and Linker Directives

Name	Parameters	Description
.data	$a d d r$	The following items are to be assembled into the data segment. By default, begin at the next available address in the data segment. If the optional argument addr is present, then begin at $a d d r$.
. text	$a d d r$	The following items are to be assembled into the text segment. By default, begin at the next available ad- dress in the text segment. If the optional argument addr is present, then begin at addr. In SPIM, the only items that can be assembled into the text segment are instructions and words (via the . word directive).
.kdata $\quad a d d r$	The kernel data segment. Like the data segment, but used by the Operating System.	
.ktext $\quad a d d r$	The kernel text segment. Like the text segment, but used by the Operating System.	
.globl	$s y m$	Declare as global the label sym, and declare that it is size bytes in length (this information can be used by the assembler).
Dize	Declare as global the label sym.	

4.5.2 Data Directives

Name Parameters	Description		
.align n	Align the next item on the next 2^{n}-byte boundary. align 0 turns off automatic alignment.		
.ascii str	Assemble the given string in memory. Do not null- terminate.		
.asciiz str	Assemble the given string in memory. Do null- terminate.		
.byte byte1 \cdots byteN			
Assemble the given bytes (8-bit integers).			
. space half1 \quad size halfN		\quad	Assemble the given halfwords (16-bit integers).
:---			
Allocate n bytes of space in the current seg-			
ment. In SPIM, this is only permitted in the data			
segment.			
Assemble the given words (32-bit integers).			

4.6 The SPIM Environment

4.6.1 SPIM syscalls

Service	Code	Arguments	Result
print_int	1	\$a0	none
print_float	2	\$f12	none
print_double	3	\$f12	none
print_string	4	\$a0	none
read_int	5	none	\$v0
read_float	6	none	\$f0
read_double	7	none	\$f0
read_string	8	\$a0 (address), \$a1 (length)	none
sbrk	9	\$a0 (length)	\$v0
exit	10	none	none

4.7 The Native MIPS Instruction Set

Many of the instructions listed here are not native MIPS instructions. Instead, they are pseudoinstructions- macros that the assembler knows how to translate into native

MIPS instructions. Instead of programming the "real" hardware, MIPS programmers generally use the virtual machine implemented by the MIPS assembler, which is much easier to program than the native machine.

For example, in most cases, the SPIM assembler will allow src2 to be a 32 -bit integer constant. Of course, since the MIPS instructions are all exactly 32 bits in length, there's no way that a 32 -bit constant can fit in a 32 -bit instruction word and have any room left over to specify the operation and the operand registers! When confronted with a 32 -bit constant, the assembler uses a table of rules to generate a sequence of native instructions that will do what the programmer has asked.

The assembler also performs some more intricate transformations to translate your programs into a sequence of native MIPS instructions, but these will not be discussed in this text.

By default, the SPIM environment implements the same virtual machine that the MIPS assembler uses. It also implements the bare machine, if invoked with the -bare option enabled.

4.8 Exercises

4.8.1

Many of the instructions available to the MIPS assembly language programmer are not really instructions at all, but are translated by the assembler into one or more instructions.

For example, the move instruction can be implemented using the add instruction. Making use of register $\$ 0$, which always contains the constant zero, and the fact that the for any number $x, x+0 \equiv x$, we can rewrite

```
move des, src1
```

as

```
add des, src1, $0
```

Similarly, since either the exclusive or or inclusive or of any number and 0 gives the number, we could also write this as either of the following:

```
or des, src1, $0
xor des, src1, $0
```

Show how you could implement the following instructions, using other instructions in the native MIPS instruction set:

1. rem des, src1, src2
2. mul des, src1, src2
3. li des, const
4. lui des, const

Keep in mind that the register \$at is reserved for use by the assembler, so you can feel free to use this register for scratch space. You must not clobber any other registers, however.

Chapter 5

MIPS Assembly Code Examples

by Daniel J. Ellard

The following sections include the source code for several of the programs referenced by the tutorial. All of this source code is also available online.

For the convenience of the reader, the source code is listed here along with line numbers in the left margin. These line numbers do not appear in the original code, and it would be an error to include them in your own code.

5.1 add2.asm

This program is described in section 2.4.

```
## Daniel J. Ellard -- 02/21/94
## add2.asm-- A program that computes and prints the sum
## of two numbers specified at runtime by the user.
## Registers used:
## $t0 - used to hold the first number.
## $t1 - used to hold the second number.
## $t2 - used to hold the sum of the $t1 and $t2.
## $v0 - syscall parameter and return value.
## $a0 - syscall parameter.
main:
    ## Get first number from user, put into $t0.
    li $v0, 5 # load syscall read_int into $v0.
    syscall # make the syscall.
    move $t0, $v0 # move the number read into $t0.
    ## Get second number from user, put into $t1.
    li $v0, 5 # load syscall read_int into $v0.
    syscall # make the syscall.
    move $t1, $v0 # move the number read into $t1.
    add $t2, $t0, $t1 # compute the sum.
    ## Print out $t2.
    move $a0, $t2 # move the number to print into $a0.
    li $v0, 1 # load syscall print_int into $v0.
    syscall # make the syscall.
    li $v0, 10 # syscall code 10 is for exit.
    syscall # make the syscall.
## end of add2.asm.
```


5.2 hello.asm

This program is described in section 2.5.

```
## Daniel J. Ellard -- 02/21/94
## hello.asm-- A "Hello World" program.
## Registers used:
## $v0 - syscall parameter and return value.
## $a0 - syscall parameter-- the string to print.
    .text
main:
    la $a0, hello_msg # load the addr of hello_msg into $a0.
    li $v0, 4 # 4 is the print_string syscall.
    syscall # do the syscall.
    li $v0, 10 # 10 is the exit syscall.
    syscall # do the syscall.
## Data for the program:
    .data
hello_msg: .asciiz "Hello World\n"
## end hello.asm
```


5.3 multiples.asm

This program is described in section 2.7. The algorithm used is algorithm 2.1 (shown on page 32).

```
## Daniel J. Ellard -- 02/21/94
## multiples.asm-- takes two numbers A and B, and prints out
## all the multiples of A from A to A * B.
## If B <= O, then no multiples are printed.
## Registers used:
## $t0 - used to hold A.
## $t1 - used to hold B.
## $t2 - used to store S, the sentinel value A * B.
## $t3 - used to store m, the current multiple of A.
    .text
main:
    ## read A into $t0, B into $t1.
    li $v0, 5 # syscall 5 = read_int
    syscall
    move $t0, $v0 # A = integer just read
    li $v0, 5 # syscall 5 = read_int
    syscall
    move $t1, $v0 # B = integer just read
    blez $t1, exit # if B <= 0, exit.
    mul $t2, $t0, $t1 # S = A * B.
    move $t3,$t0 # m = A
loop:
    move $a0, $t3 # print m.
    li $v0, 1 # syscall 1 = print_int
    syscall # make the system call.
    beq $t2, $t3, endloop # if m == S, we're done.
    add $t3, $t3, $t0 # otherwise, m = m + A.
    la $a0, space # print a space.
    li $v0, 4 # syscall 4 = print_string
    syscall
```

```
5.3. MULTIPLES.ASM
```

```
    b loop
```

 b loop
 endloop:
endloop:
la \$a0, newline
la \$a0, newline
li \$v0,4
li \$v0,4
syscall
syscall
exit: \# exit the program:
exit: \# exit the program:
li \$v0, 10
li \$v0, 10
syscall
syscall
\# syscall 10 = exit
\# syscall 10 = exit
\# we're outta here.
\# we're outta here.

Here's where the data for this program is stored:

Here's where the data for this program is stored:

 .data
 .data
 space: .asciiz " "
space: .asciiz " "
newline: .asciiz "\n"
newline: .asciiz "\n"

end of multiples.asm

```
## end of multiples.asm
```


5.4 palindrome.asm

This program is described in section 2.8. The algorithm used is algorithm 2.2 (shown on page 34).

```
## Daniel J. Ellard -- 02/21/94
## palindrome.asm -- read a line of text and test if it is a palindrome.
## Register usage:
## $t1 - A.
## $t2 - B.
## $t3 - the character at address A.
## $t4 - the character at address B.
## $v0 - syscall parameter / return values.
## $a0 - syscall parameters.
## $a1 - syscall parameters.
    .text
main: # SPIM starts by jumping to main.
    ## read the string S:
    la $a0, string_space
    li $a1, 1024
    li $v0, 8 # load "read_string" code into $v0.
    syscall
    la $t1, string_space # A = S.
    la $t2, string_space ## we need to move B to the end
length_loop: # of the string:
    lb $t3, ($t2)
    beqz $t3, end_length_loop
    addu $t2, $t2, 1
    b length_loop
end_length_loop:
    subu $t2, $t2, 2 ## subtract 2 to move B back past
test_loop:
    bge $t1, $t2, is_palin # if A >= B, it's a palindrome.
    lb $t3, ($t1) # load the byte at addr A into $t3,
    lb $t4, ($t2) # load the byte at addr B into $t4.
    bne $t3, $t4, not_palin # if $t3 != $t4, not a palindrome.
    addu $t1, $t1, 1 # increment A,
```

```
5.4. PALINDROME.ASM
```

 subu $t2, $t2, 1 # decrement B,
    ```
    subu $t2, $t2, 1 # decrement B,
    b test_loop # and repeat the loop.
    b test_loop # and repeat the loop.
is_palin: ## print the is_palin_msg, and exit.
is_palin: ## print the is_palin_msg, and exit.
    la $a0, is_palin_msg
    la $a0, is_palin_msg
    li $v0,4
    li $v0,4
    syscall
    syscall
    b exit
    b exit
not_palin
not_palin
    la $a0, not_palin_msg ## print the is_palin_msg, and exit.
    la $a0, not_palin_msg ## print the is_palin_msg, and exit.
    li $v0,4
    li $v0,4
    syscall
    syscall
    b exit
    b exit
exit: ## exit the program:
exit: ## exit the program:
    li $v0, 10 # load "exit" into $v0.
    li $v0, 10 # load "exit" into $v0.
    syscall # make the system call.
    syscall # make the system call.
## Here's where the data for this program is stored:
## Here's where the data for this program is stored:
    .data
    .data
string_space: .space 1024 # reserve 1024 bytes for the string.
string_space: .space 1024 # reserve 1024 bytes for the string.
is_palin_msg: .asciiz "The string is a palindrome.\n"
is_palin_msg: .asciiz "The string is a palindrome.\n"
not_palin_msg: .asciiz "The string is not a palindrome.\n"
not_palin_msg: .asciiz "The string is not a palindrome.\n"
## end of palindrome.asm
```


end of palindrome.asm

```

\section*{5.5 atoi-1.asm}

This program is described in section 2.9.1. The algorithm used is algorithm 2.3 (shown on page 37 ).
```


Daniel J. Ellard -- 03/02/94

atoi-1.asm -- reads a line of text, converts it to an integer, and

prints the integer.

Register usage:

\$t0 - S.

\$t1 - the character pointed to by S.

\$t2 - the current sum.

 .text
 main:
la \$a0, string_space \#\# read the string S:
li \$a1, 1024
li \$v0, 8 \# load "read_string" code into \$v0.
syscall
la \$t0, string_space \# Initialize S.
li \$t2, 0 \# Initialize sum = 0.
sum_loop:
lb $t1, ($t0) \# load the byte at addr S into \$t1,
addu \$t0, \$t0, 1 \# and increment S.
\#\# use 10 instead of '\n' due to SPIM bug!
beq \$t1, 10, end_sum_loop \# if \$t1 == \n, branch out of loop.
mul \$t2, \$t2, 10 \# t2 *= 10.
sub \$t1, \$t1, '0' \# t1 -= '0'.
add \$t2, \$t2, \$t1 \# t2 += t1.
b sum_loop \# and repeat the loop.
end_sum_loop:
move \$a0, \$t2 \# print out the answer (t2).
li \$v0, 1
syscall
la \$a0, newline \# and then print out a newline.
li \$v0, 4

```
```

```
    syscall
```

```
    syscall
exit: ## exit the program:
exit: ## exit the program:
    li $v0, 10
    li $v0, 10
    syscall
    syscall
    .data .asciiz "\n"
    .data .asciiz "\n"
    newline: .asciiz "\n"
    newline: .asciiz "\n"
string_space: .space 1024
string_space: .space 1024
    ## end of atoi-1.asm
    ## end of atoi-1.asm
# load "exit" into $v0.
# load "exit" into $v0.
    # make the system call.
```

```
    # make the system call.
```

```
.

\section*{5.6 atoi-4.asm}

This program is described in section 2.9.4. The algorithm used is algorithm 2.3 (shown on page 37), modified as described in section 2.9.4.
```


Daniel J. Ellard -- 03/04/94

atoi-4.asm -- reads a line of text, converts it to an integer,

and prints the integer.

Handles signed numbers, detects bad characters, and overflow.

Register usage:

\$t0 - S.

\$t1 - the character pointed to by S.

\$t2 - the current sum.

\$t3 - the "sign" of the sum.

\$t4 - holds the constant 10.

\$t5 - used to test for overflow.

 .text
 main:
la \$a0, string_space \# read the string S:
li \$a1, 1024
li \$v0, 8 \# load "read_string" code into \$v0.
syscall
la \$t0, string_space \# Initialize S.
li \$t2, 0 \# Initialize sum = 0.
get_sign:
li \$t3, 1 \# assume the sign is positive.
lb $t1, ($t0) \# grab the "sign"
bne \$t1, '-', positive \# if not "-", do nothing.
li \$t3, -1 \# otherwise, set t3 = -1, and
addu \$t0, \$t0, 1 \# skip over the sign.
positive:
li \$t4, 10 \# store the constant 10 in \$t4.
sum_loop:
lb $t1, ($t0) \# load the byte at addr S into \$t1,
addu \$t0, \$t0, 1 \# and increment S,
\#\# use 10 instead of '\n' due to SPIM bug!
beq \$t1, 10, end_sum_loop \# if \$t1 == \n, branch out of loop.
blt \$t1, '0', end_sum_loop \# make sure 0 <= t1
bgt \$t1, '9', end_sum_loop \# make sure 9 >= t1

```
```

 mult $t2, $t4 # multiply $t2 by 10.
 mfhi $t5 # check for overflow;
 bnez $t5, overflow # if so, then report an overflow.
 mflo $t2
 blt $t2, $0, overflow
 sub $t1, $t1, '0' # t1 -= '0'.
 add $t2, $t2, $t1 # t2 += t1.
 blt $t2, $0, overflow
 b sum_loop # and repeat the loop.
 end_sum_loop:
mul \$t2, \$t2, \$t3 \# set the sign properly.
move \$a0, \$t2 \# print out the answer (t2).
li \$v0, 1
syscall
la \$a0, newline \# and then print out a newline.
li \$v0,4
syscall
b exit
overflow: \# indicate that an overflow occurred.
la \$a0, overflow_msg
li \$v0,4
syscall
b exit
exit: \# exit the program:
li \$v0, 10
\# load "exit" into \$v0.
syscall \# make the system call.
.data \#\# Start of data declarations:
newline: .asciiz "\n"
overflow_msg: .asciiz "Overflow!\n"
string_space: .space 1024 \# reserve 1024 bytes for the string.

end of atoi-4.asm

```

\section*{5.7 printf.asm}

Using syscalls for output can quickly become tedious, and output routines can quickly muddy up even the neatest code, since it requires several assembly instructions just to print out a number. To make matters worse, there is no syscall which prints out a single ASCII character.

To help my own coding, I wrote the following printf function, which behaves like a simplified form of the printf function in the standard C library. It implements only a fraction of the functionality of the real printf, but enough to be useful. See the comments in the code for more information.
```


Daniel J. Ellard -- 03/13/94

printf.asm--

an implementation of a simple printf work-alike.

printf--

A simple printf-like function. Understands just the basic forms

of the %s, %d, %c, and %% formats, and can only have 3 embedded

formats (so that all of the parameters are passed in registers).

If there are more than 3 embedded formats, all but the first 3 are

completely ignored (not even printed).

Register Usage:

$a0,$s0 - pointer to format string

$a1,$s1 - format argument 1 (optional)

$a2,$s2 - format argument 2 (optional)

$a3,$s3 - format argument 3 (optional)

\$s4 - count of formats processed.

\$s5 - char at \$s4.

\$s6 - pointer to printf buffer

 .text
 .globl printf
 printf:
subu \$sp, \$sp, 36 \# set up the stack frame,
sw $ra, 32($sp) \# saving the local environment.
sw $fp, 28($sp)
sw $s0, 24($sp)
sw $s1, 20($sp)
sw $s2, 16($sp)
sw $s3, 12($sp)
sw $s4, 8($sp)
sw $s5, 4($sp)

```
```

 sw $s6, 0($sp)
 addu $fp, $sp, 36
 move $s0, $a0 # grab the a
 move $s1, $a1 # arg1 (optional)
 move $s2, $a2 # arg2 (optional)
 move $s3, $a3 # arg3 (optional)
 li $s4, 0 # set # of formats = 0
 la $s6, printf_buf # set s6 = base of printf buffer.
 printf_loop: \# process each character in the fmt:
lb $s5, 0($s0) \# get the next character, and then
addu \$s0, \$s0, 1 \# bump up \$s0 to the next character.
beq \$s5, ,%', printf_fmt \# if the fmt character, then do fmt.
beq \$0, \$s5, printf_end \# if zero, then go to end.
printf_putc
sb $s5, 0($s6) \# otherwise, just put this char
sb $0,1($s6)
move \$a0, \$s6
li \$v0,4
syscall
b printf_loop \# loop on.
printf_fmt
lb $s5, 0($s0) \# see what the fmt character is,
addu \$s0, \$s0, 1 \# and bump up the pointer.
beq \$s4, 3, printf_loop \# if we've already processed 3 args,
\# then *ignore* this fmt.
beq \$s5, 'd', printf_int \# if 'd', print as a decimal integer.
beq \$s5, 's', printf_str \# if 's', print as a string.
beq \$s5, ,%,', printf_perc \# if ,%', print a ,%,
b printf_loop \# otherwise, just continue.
printf_shift_args: \# shift over the fmt args,
move \$s1, \$s2 \# \$s1 = \$s2
move $s2,$s3 \# \$s2 = \$s3
\# into the printf buffer,
\# and then print it with the
\# print_str syscall
beq \$s5, 'c', printf_char \# if 'c', print as a ASCII char.

```
```

 add $s4, $s4, 1 # increment # of args processed.
 b printf_loop # and continue the main loop.
 printf_int: \# deal with a %d:
move \$a0, \$s1 \# do a print_int syscall of \$s1.
li \$v0, 1
syscall
b printf_shift_args \# branch to printf_shift_args
printf_str: \# deal with a %s:
move \$a0, \$s1 \# do a print_string syscall of \$s1.
li \$v0,4
syscall
b printf_shift_args \# branch to printf_shift_args
printf_char: \# deal with a %c:
sb $s1, 0($s6) \# fill the buffer
sb $0, 1($s6) \# and then a null.
move \$a0, \$s6
li \$v0,4
syscall
b printf_shift_arg
printf_perc: \# deal with a %%:
li \$s5, '%'
sb $s5, 0($s6)
sb $0, 1($s6)
move $a0,$s6
li \$v0,4
syscall
b printf_loop
printf_end:
IW $ra, 32($sp) \# restore the prior environment:
lw $fp, 28($sp)
lw $s0, 24($sp)
lw $s1, 20($sp)
lw $s2, 16($sp)
lw $s3, 12($sp)
lw $s4, 8($sp)
lw $s5, 4($sp)
lw $s6, 0($sp)
addu \$sp, \$sp, 36 \# release the stack frame.

```
```


fill the buffer in with byte \$s1,

```
# fill the buffer in with byte $s1,
# and then do a print_str syscall
# and then do a print_str syscall
# on the buffer.
# on the buffer.
# branch to printf_shift_args
# branch to printf_shift_args
# (this is redundant)
# (this is redundant)
# fill the buffer in with byte %,
# fill the buffer in with byte %,
# and then a null.
# and then a null.
# and then do a print_str syscall
# and then do a print_str syscall
# on the buffer.
# on the buffer.
# branch to printf_loop
```


branch to printf_loop

```
```

5.7. PRINTF.ASM

| 120 | jr | \$ra | \# return. |
| :--- | :---: | :---: | :---: |
| 121 | | | |
| 122 | .data | | |
| 123 | printf_buf: | | |
| 124 | | | |
| 125 | \#\# end of printf.asm | 2 | |

```83

\section*{5.8 fib-o.asm}

This program is described in section 3.1.1.3.
This is a (somewhat) optimized version of a program which computes Fibonacci numbers. The optimization involves not building a stack frame unless absolutely necessary. I wouldn't recommend that you make a habit of optimizing your code in this manner, but it can be a useful technique.
```


Daniel J. Ellard -- 02/27/94

fib-o.asm-- A program to compute Fibonacci numbers.

An optimized version of fib-t.asm.

main--

Registers used:

\$v0 - syscall parameter and return value.

\$a0 - syscall parameter-- the string to print.

 .text
 main:
subu \$sp, \$sp, 32 \# Set up main's stack frame:
sw $ra, 28($sp)
sw $fp, 24($sp)
addu \$fp, \$sp, }3
\#\# Get n from the user, put into \$a0.
li \$v0, 5 \# load syscall read_int into \$v0.
syscall \# make the syscall.
move \$a0, \$v0 \# move the number read into \$a0.
jal fib \# call fib.
move \$a0, \$v0
li \$v0, 1 \# load syscall print_int into \$v0.
syscall \# make the syscall.
la \$a0, newline
li \$v0,4
syscall \# make the syscall.
li \$v0, 10 \# 10 is the exit syscall.
syscall \# do the syscall.

fib-- (hacked-up caller-save method)

Registers used:

\$a0 - initially n.

```
```


\$t0 - parameter n.

\$t1 - fib (n - 1).

\$t2 - fib (n - 2).

 .text
 fib:
bgt \$a0, 1, fib_recurse \# if n < 2, then just return a 1,
li \$v0, 1 \# don't build a stack frame.
jr \$ra
fib_recurse: \# the recursive case:
subu \$sp, \$sp, 32
sw $ra, 28($sp)
Sw $fp, 24($sp)
addu $fp,$sp, 32
move \$t0, \$a0
sw $t0, 20($sp)
sub \$a0, \$t0, 1
jal fib
move \$t1, \$v0
lw $t0, 20($sp)
\# restore n.
\# compute fib (n - 2):
sw $t1, 16($sp) \# preserve \$t1.
sub \$a0, \$t0, 2 \# compute fib (n - 2)
jal fib
move \$t2, \$v0 \# t2 = fib (n - 2)
lw $t1, 16($sp) \# restore \$t1.
add \$v0, \$t1, \$t2 \# \$v0 = fib (n - 1) + fib (n - 2)
lw $ra, 28($sp) \# restore Return Address.
lw $fp, 24($sp) \# restore Frame Pointer.
addu \$sp, \$sp, 32 \# restore Stack Pointer.
jr \$ra

return.

data for fib-o.asm:

 .data
 newline: .asciiz "\n"

end of fib-o.asm

```

\section*{5.9 treesort.asm}

This program is outlined in section 3.2. The treesort algorithm is given in algorithm 3.1 (shown on page 51).
```


Daniel J. Ellard -- 03/05/94

tree-sort.asm -- some binary tree routines, in MIPS assembly.

The tree nodes are 3-word structures. The first word is the

integer value of the node, and the second and third are the

left and right pointers.

\&\&\& NOTE-- the functions in this file assume this

\&\&\& representation!

main --

1. Initialize the tree by creating a root node, using the

sentinel value as the value.

2. Loop, reading numbers from the user. If the number is equal

to the sentinel value, break out of the loop; otherwise

insert the number into the tree (using tree_insert).

3. Print out the contents of the tree (skipping the root node),

by calling tree_print on the left and right

children of the root node.

Register usage:

\$s0 - the root of the tree.

\$s1 - each number read in from the user.

\$s2 - the sentinel value (right now, this is 0).

 .text
 main:
li \$s2, 0 \# $s2 = the sentinel value.
 ## Step 1: create the root node.
 ## root = tree_node_create ($s2, 0, 0);
move $a0,$s2 \# val = \$s2
li \$a1, 0 \# left = NULL
li \$a2, 0 \# right = NULL
jal tree_node_create \# call tree_node_create
move $s0,$v0 \# and put the result into \$s0.
\#\# Step 2: read numbers and add them to the tree, until
\#\# we see the sentinel value.
\#\# register \$s1 holds the number read.

```
```

input_loop:
li \$v0, 5 \# syscall 5 == read_int.
syscall
move \$s1, \$v0 \# \$s1 = read_int
beq \$s1, \$s2, end_input \# if we read the sentinel, break.
\# tree_insert (number, root);
move \$a0, \$s1 \# number= \$s1
move \$a1, \$s0 \# root = \$s0
jal tree_insert \# call tree_insert.
b input_loop \# repeat input loop.
end_input:
\#\# Step 3: print out the left and right subtrees.
lw $a0, 4($s0) \# print the root's left child.
jal tree_print
lw $a0, 8($s0) \# print the root's right child.
jal tree_print
b exit \# exit.

end of main.

tree_node_create (val, left, right): make a new node with the given

val and left and right descendants.

Register usage:

\$s0 - val

\$s1 - left

\$s2 - right

tree_node_create:
\# set up the stack frame:
subu \$sp, \$sp, 32
sw $ra, 28($sp)
sw $fp, 24($sp)
sw $s0, 20($sp)
sw $s1, 16($sp)
sw $s2, 12($sp)
sw $s3, 8($sp)
addu \$fp, \$sp, 32
\# grab the parameters:
move \$s0, \$a0 \# \$s0 = val
move \$s1, \$a1 \# \$s1 = left

```
```

 move $s2,$a2
 li $a0, 12
 $v0, 9
 syscall
 move $s3, $v0
 beqz $s3, out_of_memory # are we out of memory?
 sw $s0, 0($s3) # node->number = number
 sw $s1, 4($s3) # node->left = left
 SW $s2, 8($s3) # node->right = right
 move $v0, $s3 # put return value into v0.
 # release the stack frame:
 lw $ra, 28($sp) # restore the Return Address.
 lw $fp, 24($sp) # restore the Frame Pointer.
 lw $s0, 20($sp) # restore $s0.
 lw $s1, 16($sp) # restore $s1.
 lw $s2, 12($sp) # restore $s2.
 lw $s3, 8($sp) # restore $s3.
 addu $sp, $sp, 32 # restore the Stack Pointer.
 jr $ra # return.

end of tree_node_create.

tree_insert (val, root): make a new node with the given val.

Register usage:

\$s0 - val

\$s1 - root

\$s2 - new_node

\$s3 - root->val (root_val)

\$s4 - scratch pointer (ptr).

tree_insert:
\# set up the stack frame:
subu \$sp, \$sp, 32
sw $ra, 28($sp)
sw $fp, 24($sp)
sw $s0, 20($sp)
sw $s1, 16($sp)
sw $s2, 12($sp)
sw $s3, 8($sp)
sw $s3, 4($sp)
addu \$fp, \$sp, 32

```
```

 # grab the parameters:
 move $s0, $a0
 move $s1, $a1
 # $s0 = val
 # $s1 = root
 # make a new node:
 # new_node = tree_node_create (val, 0, 0);
 move $a0, $s0
 li $a1, 0
 li $a2, 0
 jal tree_node_create
 move $s2, $v0
 ## search for the correct place to put the node.
 ## analogous to the following C code:
 ## for (;;) {
 ## root_val = root->val;
 ## if (val <= root_val) {
 ## ptr = root->left;
 ## if (ptr != NULL) {
 ## root = ptr;
 ## continue;
 ## }
 ## else {
 ##
 ##
 ## }
 ## }
 ## else {
 ## /* the right side is symmetric. */
 ## }
 ## }
 ##
 ## Commented with equivalent C code (you will lose many
 ## style points if you ever write C like this...).
 search_loop:
lw $s3, 0($s1) \# root_val = root->val;
ble \$s0, \$s3, go_left \# if (val <= s3) goto go_left;
b go_right \# goto go_right;
go_left:
lw $s4, 4($s1) \# ptr = root->left;
beqz \$s4, add_left
move \$s1, \$s4
b search_loop
\# if (ptr == 0) goto add_left;
\# root = ptr;
\# goto search_loop;

```
```

add_left:
SW $s2, 4($s1) \# root->left = new_node;
b
end_search_loop
\# goto end_search_loop;
go_right:
lw $s4, 8($s1) \# ptr = root->right;
beqz \$s4, add_right
\$s4, add
move
\$s1, \$s4
b search_loop
\# if (ptr == 0) goto add_right;
\# root = ptr;
\# goto search_loop;
add_right:
Sw $s2, 8($s1) \# root->right = new_node;
b end_search_loop \# goto end_search_loop;
end_search_loop:
lw $ra, 28($sp) \# restore the Return Address.
lw $fp, 24($sp) \# restore the Frame Pointer.
lw $s0, 20($sp) \# restore \$s0.
lw $s1, 16($sp) \# restore \$s1.
lw $s2, 12($sp) \# restore \$s2.
lw $s3, 8($sp) \# restore \$s3.
lw $s4, 4($sp) \# restore \$s4.
addu \$sp, \$sp, 32 \# restore the Stack Pointer.
jr \$ra \# return.

end of node_create.

tree_walk (tree):

Do an inorder traversal of the tree, printing out each value.

Equivalent C code:

void tree_print (tree_t *tree)

{

if (tree != NULL) {

tree_print (tree->left);

printf ("%d\n", tree->val);

tree_print (tree->right);

}

}

Register usage:

s0 - the tree.

tree_print:

set up the stack frame:

```
```

 subu $sp, $sp, }3
 sw $ra, 28($sp)
 sw $fp, 24($sp)
 sw $s0, 20($sp)
 addu $fp, $sp, 32
 move $s0, $a0 # $s0 = tree
 beqz $s0, tree_print_end # if tree == NULL, then return.
 lw $a0, 4($s0) # recurse left.
 jal tree_print
 lw $a0, 0($s0)
 li $v0,1
 syscall
 la $a0, newline # also print a newline.
 li $v0,4
 syscall
 lw $a0, 8($s0) # recurse right.
 jal tree_print
 tree_print_end: \# clean up and return:
lw $ra, 28($sp) \# restore the Return Address.
lw $fp, 24($sp) \# restore the Frame Pointer.
lw $s0, 20($sp) \# restore \$s0.
addu \$sp, \$sp, 32 \# restore the Stack Pointer.
jr \$ra \# return.

end of tree_print.

out_of_memory --

The routine to call when sbrk fails. Jumps to exit.

out_of_memory:
la \$a0, out_of_mem_msg
li \$v0,4
syscall
j exit

end of out_of_memory.

exit --

The routine to call to exit the program.

```

CHAPTER 5. MIPS ASSEMBLY CODE EXAMPLES
```

exit:
li \$v0, 10
\# 10 is the exit syscall.
syscall
\#\# end of program!

end of exit.

Here's where the data for this program is stored:

 .data
 newline: .asciiz "\n"
out_of_mem_msg: .asciiz "Out of memory!\n"

end of tree-sort.asm

```
```


[^0]: ${ }^{1}$ This shift will break many, many existing programs. Converting all of these programs will keep many, many programmers busy for some time.

[^1]: ${ }^{2}$ In some computers, the smallest distinct unit of memory is not a byte. For the sake of simplicity, however, this section assumes that the smallest distinct unit of memory on the computer in question is a byte.

[^2]: ${ }^{1}$ For more detailed information about the MIPS instruction set and the SPIM environment, consult chapter 4 of this book, and SPIM S20: A MIPS R2000 Simulator by James Larus. Other references include Computer Organization and Design, by David Patterson and John Hennessy (which includes an expanded version of James Larus' SPIM documentation as appendix A), and MIPS R2000 RISC Architecture by Gerry Kane.

[^3]: ${ }^{2}$ For many years, considerable effort was spent trying to develop a portable assembly which could generate machine language for a wide variety of architectures. Eventually, these efforts were abandoned as hopeless.

[^4]: ${ }^{3}$ You should put your own name on your own programs, of course; Dan Ellard shouldn't take all the blame.

[^5]: ${ }^{4}$ You can "return" from main, just as you can in C, if you treat main as a function. See section 3.1 for more information.

[^6]: ${ }^{5}$ The exact text will be different on different computers.

[^7]: ${ }^{1}$ For more detailed information about the MIPS instruction set and the SPIM environment, consult chapter 4 of this book, and SPIM S20: A MIPS R2000 Simulator by James Larus. Other references include Computer Organization and Design, by David Patterson and John Hennessy (which includes an expanded version of James Larus' SPIM documentation as appendix A), and MIPS R2000 RISC Architecture by Gerry Kane.

[^8]: ${ }^{2}$ Some assemblers do have features that allow C-like structure definitions. Unfortunately, SPIM is not one of them, so you need to keep track of this information yourself.

[^9]: ${ }^{1}$ It seems to be an axiom of Computer Science that for every known definition of RISC, there exists someone who strongly disagrees with it.

