
1

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Quality-Driven Code Restructuring

2

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Refactoring
Refactoring

4 What is it?
4 Why is it necessary?
4 Examples
4 Tool support

Refactoring Strategy
4 Code Smells
4 Examples of Cure

Conclusions
4 Obstacle-driven Conclusions

3

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

(4) program transformation
issues
• Tool support
• Failure proof

4

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

What is Refactoring?

The process of changing a software system in such a way that it does
not alter the external behaviour of the code, yet improves its internal
structure [Fowl99a]

A change to the system that leaves its behaviour unchanged, but
enhances some non-functional quality - simplicity, flexibility,
understandability, ... [Beck99a]

5

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Typical Refactorings

extract code in new method

abstract variablemove method to component

create accessorsadd parameter to method

push variable uppush method up

push variable downpush method down

remove variableremove methodremove class

rename variablerename methodrename class

add variable to classadd method to classadd (sub)class to
hierarchy

Attribute RefactoringsMethod RefactoringsClass Refactorings

These simple refactorings can be combined to provide bigger restructurings
such as the introduction of design patterns.

6

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Why Refactoring?

Some argue that good design does not lead to code needing refactoring,

But in reality
4 Extremely difficult to get the design right the first time
4 You cannot fully understand the problem domain
4 You cannot understand user requirements, if the user does!
4 You cannot really plan how the system will evolve in five years
4 Original design is often inadequate
4 System becomes difficult to change

Refactoring helps you to
4 Manipulate code in a safe environment (behavior preserving)
4 Recreate a situation where evolution is possible
4 Understand existing code

Grow, don’t build software
F.P. Brooks jr

7

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Refactoring and OO

Object-Oriented Programming
4 emphasize the possibility of changes
4 rapid development cycle
4 incremental definition

New / Changing
Requirements

More
Reuse

EXPANSIONCONSOLI-
DATION

Iterative development

Consolidation is necessary to ensure next
expansion success

However software evolves, grows and... dies if not taken care of

=> This is where Refactoring comes in

8

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Rename Method: Do It Yourself

§ Do it yourself approach
§ Check if a method does not exist in the class and superclass/subclasses

with the same “name”
§ Browse all the implementers (method definitions)
§ Browse all the senders (method invocations)
§ Edit and rename all implementers
§ Edit and rename all senders
§ Remove all implementers
§ Test
§ Automated refactoring is better !

BX

B b = new B();
b.blnc();

blnce()

A
blnce()

D
blnce()

C
blnce()

BX
balance()

A
balance()

D
balance()

C
balance()

B b = new B();
b. balance ();

9

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Rename Method
Rename Method (method, new_name)

Preconditions
4 no method exists with the signature implied by new_name in the inheritance

hierarchy that contains method
4 [Java, C++] method is not a constructor

Postconditions
4 method has new name
4 relevant methods in the inheritance hierarchy have new name
4 invocations of changed method are updated to new name

Other Considerations
4 Statically/Dynamically Typed Languages

=> Scope of the renaming

10

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Which Refactoring Tools?

Change Efficient

Refactoring
4 Source-to-source program

transformation
4 Behaviour preserving

=> improve the program structure

Programming Environment
4 Fast edit-compile-run cycles
4 Integrated into your environment
4 Support small-scale reverse

engineering activities
=> convenient for “local” ameliorations

Failure Proof

Regression Testing
4 Repeating past tests
4 Tests require no user interaction
4 Answer per test is yes / no

=> verify if improved structure does not
damage previous work

Configuration & Version Management
4 keep track of versions that

represent project milestones
=> possibility to go back to previous version

11

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Conclusion: Tool Support

++version & configuration management

++regression testing

+-+-reverse engineering facilities

+--rapid edit-compile-run cycles

+- (?)refactoring tools

JavaC++

Refactoring Philosophy
combine simple refactorings into larger restructuring
=> improved design
=> better understandable
=> ready to add functionality

Do not apply refactoring tools in isolation

12

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Curing Duplicated Code

In the same class
• Extract Method

Between two sibling subclasses
• Extract Method
• Push identical methods up to common superclass
• Form Template Method

Between unrelated class
• Create common superclass
• Extract Component (e.g., Strategy)

Say everything exactly once
Kent Beck

13

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Design

ConfigFile

Process

CsServer UCDLink EventReceiver TrapFilter

SNMPCollector

calls 1

2

14

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Resolving the Inheritance

Process

ConfigurableProcess

CsServer UCDLink EventReceiver TrapFilter

SNMPCollector

Was ConfigFile!
reverse

inheritance

15

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Repeated Functionality

Subclasses of Process
all contain repeated
Code

16

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Template Method Pattern

Class
templateMethod()

hookMethod1()

hookMethod2()

//Some common code
hookMethod1();
//Some more common code
hookMethod2();
//Even more common code

Either abstract or
default implementation

SpecializedClass
hookMethod1()

hookMethod2()

Specialized behaviour,
if needed

17

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

ConfigurableProcess

ReadConfigFiles()

hookMethod()

EventReceiver

hookMethod()

CsServer

if (statusOfProcess == Running)
{

throw ConfigFile::ProcessRunning();
}
if ((statusOfProcess == Idle) ||

(statusOfProcess == Paused))
{

hookMethod();
statusOfProcess = Configured;

}
else {

string err("Config File already read!!");
throw ConfigFile::ConfigurationFileError(err.c_str());

}

if (pAffacade->ReadConfigs() != true)
{

pAffacade->ClearConfigs();
throw ConfigFile::ConfigurationFileError();

};

18

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Process

ConfigurableProcess

UCDLink EventReceiver TrapFilter

SNMPCollector

CsServer

Duplication Resolved

19

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Nested Conditionals
New cases should ideally not require changing existing code

May apply the State / Strategy / NullObject pattern

Use dynamic dispatch
• Define subclasses
• Define abstract method in superclass

• Put every leg into an overriding subclass method

20

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Obstacles to Refactoring
Complexity

• Changing design is hard
• Understanding code is hard

Possibility to introduce errors
• Run tests if possible
• Build tests

Clean first Then add new functionality

Cultural Issues
• Producing negative lines of code, what an idea!

• “We pay you to add new features, not to improve the code!”
• If it ain’t broke, don’t fix it

• “We do not have a problem, this is our software!“

21

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Obstacles to Refactoring
§ Performance

• Refactoring may slow down the execution
• The secret to write fast software: Write tunable software first then tune it

• Typically only 10% of your system consumes 90% of the resources so just
focus on 10 %.

• Refactorings help to localize the part that need change
• Refactorings help to concentrate the optimizations

§ Development is always under time pressure
• Refactoring takes time
• Refactoring better right after a software release

22

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Conclusion: Know-when & Know-how

§ Know-when is as important as know-how
• Refactored designs are more complex
• Use “code smells” as symptoms
• Rule of the thumb: “Once and Only Once” (Kent Beck)

=> a thing stated more than once implies refactoring

23

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Further Information

More about code smells and refactoring
• Book on refactoring [Fowl99a]

http://www.refactoring.com
• Discussion site on code smells

http://c2.com/cgi/wiki?CodeSmell

The presented tools
• Refactoring Browser (in VisualWorks Smalltalk)

http://www.cincom.com/smalltalk
(also available in several other Smalltalks)

• Java Refactorings in Eclipse
http://www.eclipse.org
(also available in other Java environments)

24

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Restructuring
§ Most common situations

§ Transform Conditionals to Polymorphism
4 Transform Self Type Checks
4 Transform Provider Type Checks

25

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Transform Conditionals to Polymorphism

Transform
Self Type Checks

Test provider
type Test self type Test external

attribute

Transform
Client Type Checks

Transform Conditionals
into Registration

Test
null values

Introduce
Null Object

Factor Out Strategy

Factor Out State

Test object state

26

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Forces
§ Requirements change

4 so new classes and new method will have to be introduced

§ Conditionals group all the variant in one place,
4 but make the change difficult

§ Conditionals clutter logic

§ Editing several classes and fixing case statements to introduce a new
behavior is error prone

27

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Overview
§ Transform Self Type Checks

4 eliminates conditionals over type information in a provider by introducing
new subclasses

§ Transform Client Checks
4 eliminates conditionals over client type information by introducing new

method to each provider classes

§ Factor out State
4 kind of Self Type Check

§ Factor out Strategy
4 kind of Self Type Check

§ Introduce Null Object
4 eliminates null test by introducing a Null Object

§ Transform Conditionals into Registration
4 eliminates conditional by using a registration mechanism

28

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Transform Self Type Checks

§ Symptoms
4Simple extensions require many changes in conditional code
4Subclassing impossible without duplicating and updating

conditional code
4Adding new case to conditional code

A
m()

Client …
case Text: this.doSomething()
case Border: this.doOther()
case D:

29

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Transformation

A
m()

Client …
case Text: this.doSomething()
case Border:
case D:

Client
A
m()
hook()

this.doSomething()

…
this.hook()

Text
hook()

Border
hook()

D
hook()

30

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Detection

§ Long methods with complex decision logic

§ Look for attribute set in constructors but never changed

§ Attributes to model type or finite set constants
4 look for "enums" and attributes with type-related names

§ Multiple methods switch on the same attribute

§ grep switch ‘find . -name “*.cxx” -print’

31

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Pros/Cons/Difficulties
§ Pros

4 New behavior is easy to add and to understand
u a new class

4 No need to change different method to add a behavior
4 All behaviors share a common interface

§ Cons
4 Behavior are dispersed into multiple but related abstractions
4 More classes

§ Difficulties
4 Not always one to one mapping between cases and subclasses
4 Clients may be changed to create instance of the right subclass

u ...buy creational patterns might help

32

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Transform Client Type Checks

§ Clients explicit type checks
§ Adding a new provider requires to change all the clients
§ Clients are defining logic about providers

A
init()

Client
a : A
m()

switch (a.class)
case B: a.init(); ((B) a).x();
case C: a.init(); ((C)) a).y();
Case D: ((D) a).z()

B
x()

C
init()
y()

D
z()

33

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

C
init()
Y()

Transformation
A
init()

Client
a : A
m()

switch (a.class)
case B: a.init(); ((B) a).x();
case C: a.init(); ((C)) a).y();
Case D: ((D) a).z()

B
x()

D
z()

Client
a : A
m()

…
doit();
…

A
init()
doit()

B
x()
doit()

C
init()
Y()
doit()

D
z()
doit()

this.init (); this.x(); this.init (); this.y();

this.z();

34

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Detection
§ Changing clients of method when new case added
§ Attribute representing a type

4In Java: instanceof
4x.getClass() == y.getClass()
4x.getClass().getName().equals(….)

35

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Pros/Cons/Difficulties
§ Pros

4The provider offers now a polymorphic interface that can be used
by other clients

4A class represent one case
4Clients are not responsible of provider logic
4Adding new case does not impact all clients

§ Cons
4Behavior is not grouped per method but per class

§ Difficulties
4Refactor the clients (Deprecate Obsolete Interfaces)
4Instance creation should not be a problem

36

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

When the Legacy Solution is the Solution

§ Abstract Factory may need to check a type variable to know
which class to instantiate.
4For example streaming objects from a text file requires to know

the type of the streamed object to recreate it

§ If provider hierarchy is frozen
4Wrapping the classes could be a good migration strategies)

§ Software that interfaces with non-oo libraries
4switch to simulate polymorphic calls

37

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Factor Out Strategy
§ Problem: How do you make a class whose behavior depends

on testing certain value more extensible
§ Apply State Pattern

4Encapsulate the behavior and delegate using a polymorphic call

38

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Transformation

AbstractStrategy

handleOperation()
A
operation()

…
strategy.handleOperation()
…

StrategyX
handleOperation()

A
operation()

…
case X: …
case Z: ….
…

strategy

StrategyZ
handleOperation()

39

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 8

Radu Marinescu

Pros/Cons/Difficulties
§ Pros

4Behavior extension is well identified
4Behavior using the extension is clearer
4Change behavior at run-time

§ Cons
4Namespace get cluterred
4Yet another indirection

§ Difficulties
4Behavior can be difficult to convert and encapsulate (passing

parameter…)

