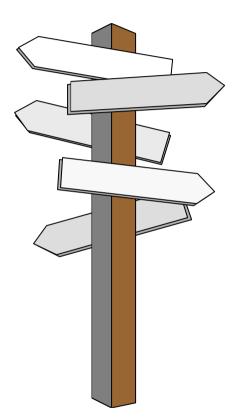
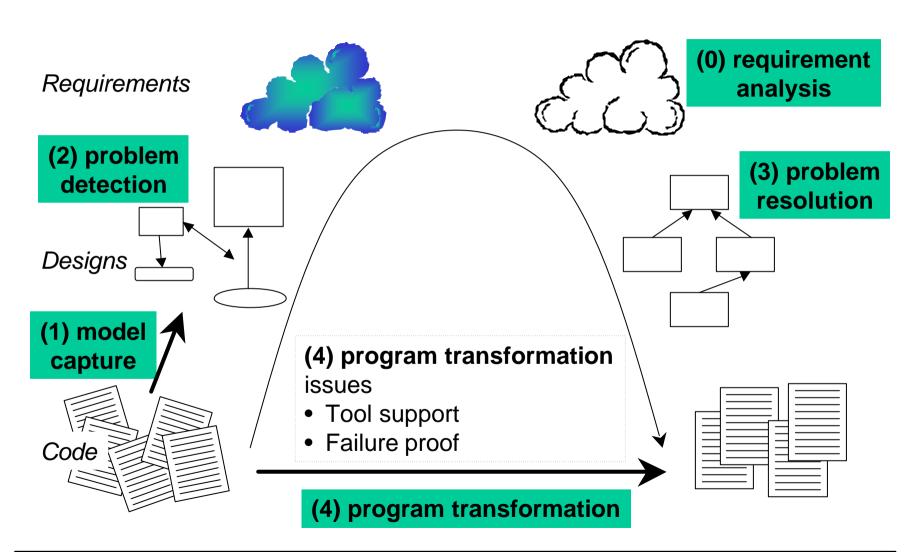
Quality-Driven Code Restructuring

Refactoring

Refactoring


- What is it?
- Why is it necessary?
- Examples
- Tool support

Refactoring Strategy


- Code Smells
- Examples of Cure

Conclusions

Obstacle-driven Conclusions

The Reengineering Life-Cycle

What is Refactoring?

The process of changing a software system in such a way that it does not alter the external behaviour of the code, yet improves its internal structure [Fowl99a]

A change to the system that leaves its behaviour unchanged, but enhances some non-functional quality - simplicity, flexibility, understandability, ... [Beck99a]

Typical Refactorings

Class Refactorings	Method Refactorings	Attribute Refactorings			
add (sub)class to hierarchy	add method to class	add variable to class			
rename class	rename method	rename variable			
remove class	remove method	remove variable			
	push method down	push variable down			
	push method up	push variable up			
	add parameter to method	create accessors			
	move method to component	abstract variable			
	extract code in new method				

These simple refactorings can be combined to provide bigger restructurings such as the introduction of design patterns.

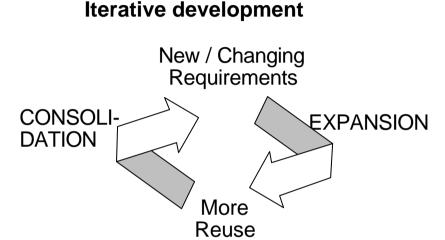
Why Refactoring?

Grow, don't build software F.P. Brooks jr

Some argue that good design does not lead to code needing refactoring,

But in reality

- Extremely difficult to get the design right the first time
- > You cannot fully understand the problem domain
- > You cannot understand user requirements, if the user does!
- > You cannot really plan how the system will evolve in five years
- Original design is often inadequate
- System becomes difficult to change

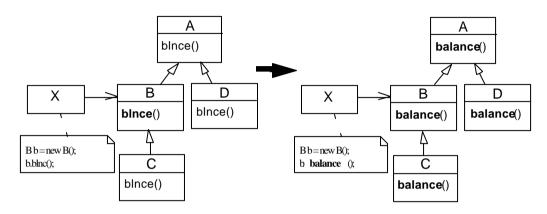

Refactoring helps you to

- Manipulate code in a safe environment (behavior preserving)
- Recreate a situation where evolution is possible
- Understand existing code

Refactoring and OO

Object-Oriented Programming

- emphasize the possibility of changes
- rapid development cycle
- incremental definition



Consolidation is necessary to ensure next expansion success

However software evolves, grows and... dies if not taken care of

=> This is where Refactoring comes in

Rename Method: Do It Yourself

- Do it yourself approach
- Check if a method does not exist in the class and superclass/subclasses with the same "name"
- Browse all the implementers (method definitions)
- Browse all the senders (method invocations)
- Edit and rename all implementers
- Edit and rename all senders
- Remove all implementers
- Test
- Automated refactoring is better !

Rename Method

Rename Method (method, new_name)

Preconditions

- no method exists with the signature implied by *new_name* in the inheritance hierarchy that contains *method*
- ▶ [Java, C++] *method* is not a constructor

Postconditions

- method has new name
- relevant methods in the inheritance hierarchy have new name
- invocations of changed method are updated to new name

Other Considerations

- Statically/Dynamically Typed Languages
 Scope of the renaming
 - => Scope of the renaming

Which Refactoring Tools?

Change Efficient

Refactoring

- Source-to-source program transformation
- Behaviour preserving
- => improve the program structure

Failure Proof

Regression Testing

- Repeating past tests
- Tests require no user interaction
- Answer per test is yes / no
- => verify if improved structure does not damage previous work

Programming Environment

- Fast edit-compile-run cycles
- Integrated into your environment
- Support small-scale reverse engineering activities
- => convenient for "local" ameliorations

Configuration & Version Management

- keep track of versions that represent project milestones
- => possibility to go back to previous version

Conclusion: Tool Support

Refactoring Philosophy

combine simple refactorings into larger restructuring

- => improved design
- => better understandable
- => ready to add functionality

Do not apply refactoring tools in isolation

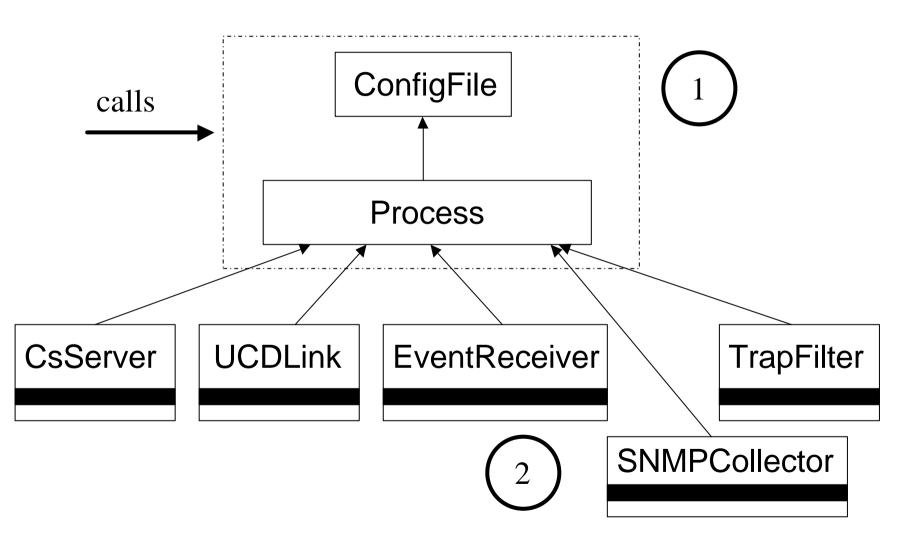
	C++	Java
refactoring tools	- (?)	+
rapid edit-compile-run cycles	-	+-
reverse engineering facilities	+-	+-
regression testing	+	+
version & configuration management	+	+

Curing Duplicated Code

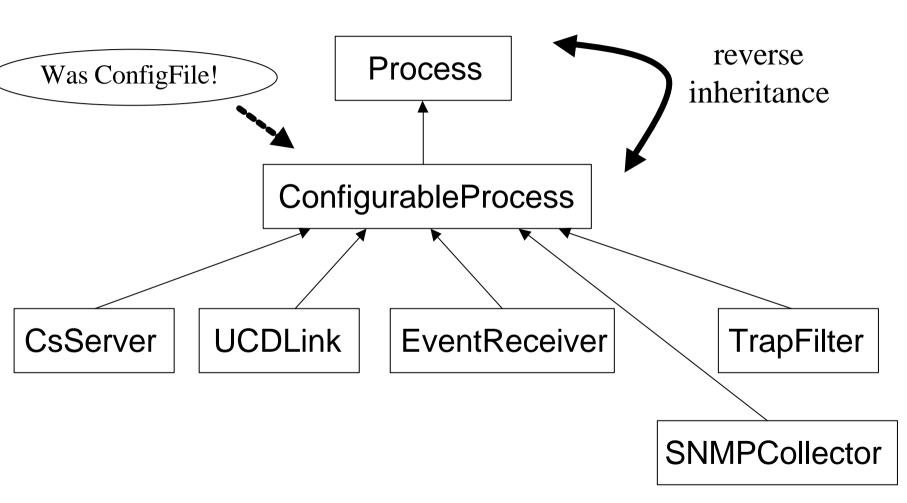
Say everything exactly once

Kent Beck

- In the same class
 - Extract Method


Between two sibling subclasses

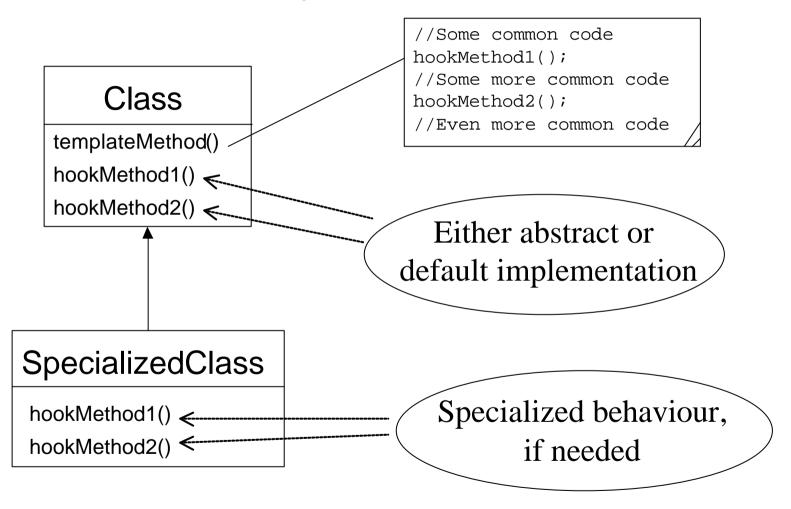
- Extract Method
- Push identical methods up to common superclass
- Form Template Method

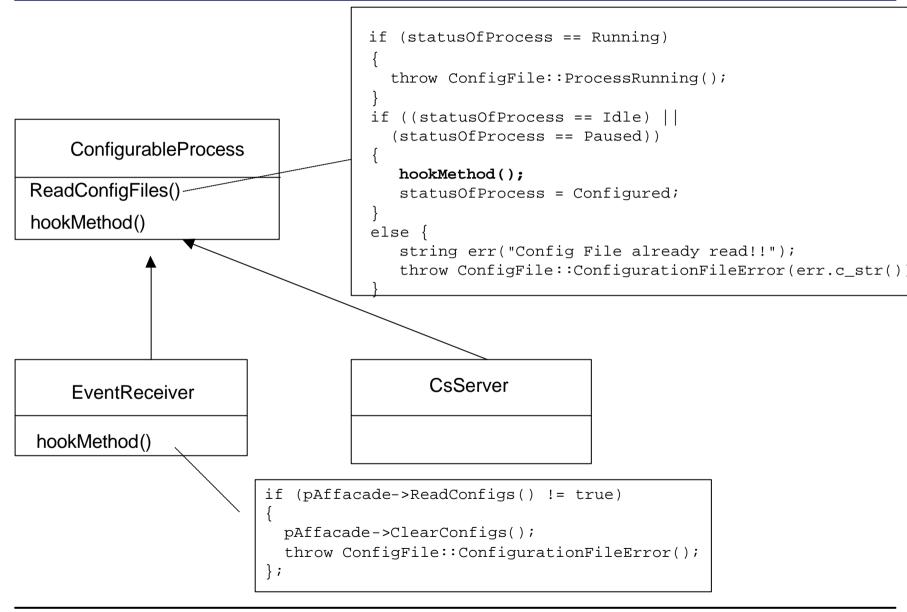

Between unrelated class

- Create common superclass
- Extract Component (e.g., Strategy)

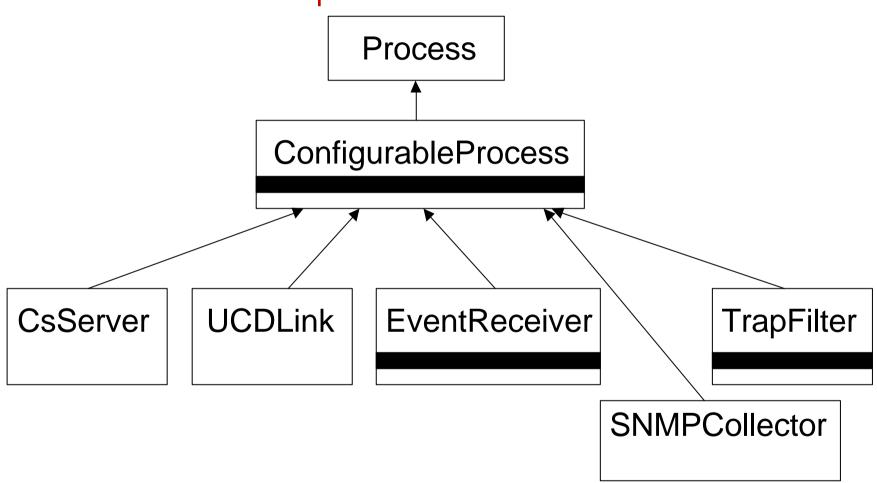
Design

Resolving the Inheritance




Repeated Functionality

									•	N		
		· · · · · · · · · · · · · · · · · · ·				· · ·					• • • • • • • • •	
	///											
	1/1											
	///											
	\sim										·. ·. · · · · ·	
	`	\langle										
×.,	·.	<u> </u>	· · · · ·		····		• •	· · · · · · · · · · · ·			· · · · · · ·	
				Š.						\$		
:	÷	: :::X::	- 11 Million - 11	2010 C 2	33 N	· ·	:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2.82		
•				1		• •						
:	2				Ne ii		:		1100 X 11 1		N: 1111	
:		: ::::::		8 H I I I	11 8		:					
				<i>i</i>						· · · · · ·		
:		: >>><>:: >		X :: : >		· .	,		N. N. 1	North State		
						: 1					1, 1, 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1				· · · · <u>`</u>		• •			and the second			
	·.	:: -,,	×		×., .,						N:	
	·.	·. · · · · · · ·							nde Xin i			
` :	:	: :::::::		2003		; ;	3				11 NSI	
						N						N
		· · · · · · · · · · · · · · · · · · ·	"	•••••				******				
							;					
1		1, 2222 A.S.		ang N	11 22	: :				1 8 6 C 1		
:	·. ·	·. · · · · · · ·	- Nei 1		N. C							
1	:			:::::	i de la compañía de la	5	:				11 IN	
• :		: :::::::: :::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::	X011 2001	::		;			- X(11) - 2 - 2 (11) - 3	::::::::: ::::::::::::::::::::::::::::	
÷.					22 11							
:	1				-80 ⁱⁱ	: :						
1	:	: :::::::		8 H H B	11 8	: :	3		883 X	8 H F F	11 333	
						N						18
N.,	:	: >>>ç>: >	:: >>: >	North		: :	,		Ny si vi si si si	X	:: >>:>:	
÷.	÷	s defise e	335 BB - B	- ÉSQ E	33 33	: :	:	- 1915, 1949 1919	में इन्द्र के साम ज	- :): : - :	- 55-1111	
•		a second to the		1 X.		· 、					· · · · · · · · · · · · · · · · · · ·	`
										N	<u>_</u>	
1 :	2	÷ ···· ··	N		N, I		:				<i></i>	
				¥		; ;						
	· · · ·				• • • •	· ·]	•				/	
										· ·	×	\mathbf{i}
		•		•		N		•	<u> </u>			$\langle \rangle$


Subclasses of Process all contain repeated Code

Template Method Pattern

Duplication Resolved

Nested Conditionals

New cases should ideally not require changing existing code

May apply the State / Strategy / NullObject pattern

Use dynamic dispatch

- Define subclasses
- Define abstract method in superclass
- Put every leg into an overriding subclass method

Obstacles to Refactoring

Complexity

- Changing design is hard
- Understanding code is hard

Possibility to introduce errors

- Run tests if possible
- Build tests

Clean first Then add new functionality

Cultural Issues

- Producing negative lines of code, what an idea!
 - "We pay you to add new features, not to improve the code!"
- If it ain't broke, don't fix it
 - "We do not have a problem, this is our software!"

Obstacles to Refactoring

- Performance
 - Refactoring may slow down the execution
 - The secret to write fast software: Write tunable software first then tune it
 - Typically only 10% of your system consumes 90% of the resources so just focus on 10 %.
 - Refactorings help to localize the part that need change
 - Refactorings help to concentrate the optimizations
- Development is always under time pressure
 - Refactoring takes time
 - Refactoring better right after a software release

Conclusion: Know-when & Know-how

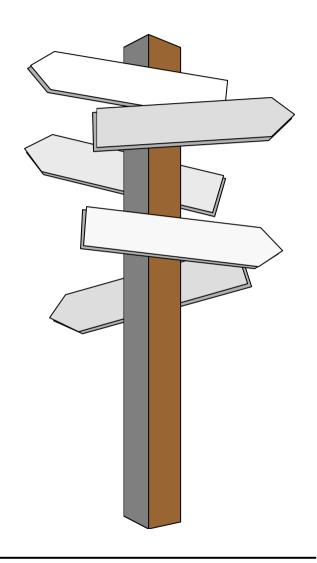
Know-when is as important as know-how

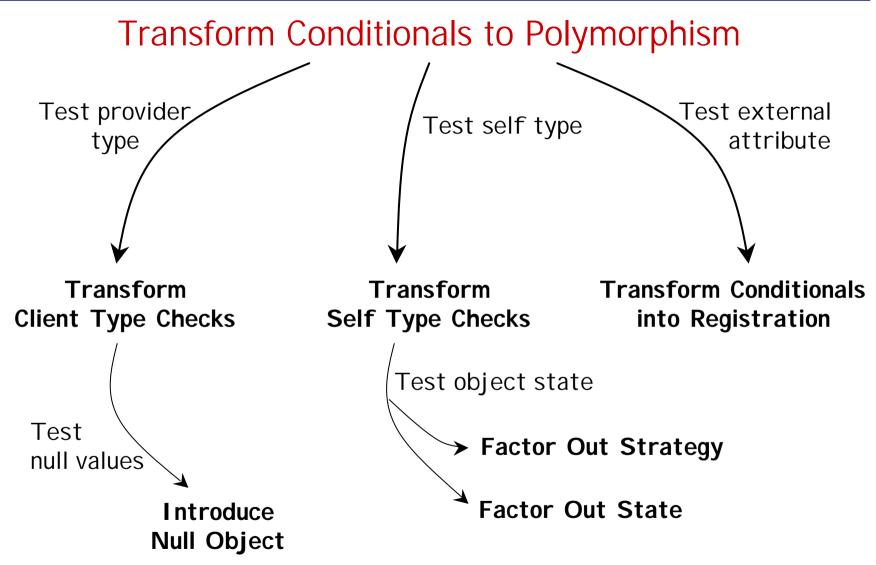
- Refactored designs are more complex
- Use *"code smells"* as symptoms
- Rule of the thumb: "Once and Only Once" (Kent Beck)

=> a thing stated more than once implies refactoring

Further Information

More about code smells and refactoring


- Book on refactoring [Fowl99a] <u>http://www.refactoring.com</u>
- Discussion site on code smells <u>http://c2.com/cgi/wiki?CodeSmell</u>


The presented tools

- Refactoring Browser (in VisualWorks Smalltalk) <u>http://www.cincom.com/smalltalk</u> (also available in several other Smalltalks)
- Java Refactorings in Eclipse <u>http://www.eclipse.org</u> (also available in other Java environments)

Restructuring

- Most common situations
- Transform Conditionals to Polymorphism
 - Transform Self Type Checks
 - Transform Provider Type Checks

Forces

- Requirements change
 - so new classes and new method will have to be introduced
- Conditionals group all the variant in one place,
 - but make the change difficult
- Conditionals clutter logic
- Editing several classes and fixing case statements to introduce a new behavior is error prone

Overview

Transform Self Type Checks

 eliminates conditionals over type information in a provider by introducing new subclasses

Transform Client Checks

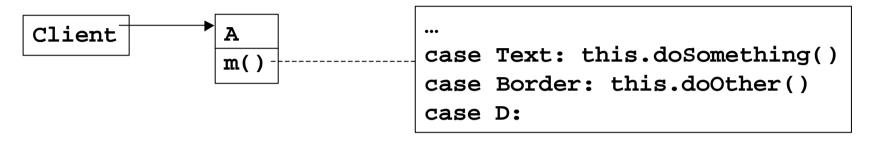
 eliminates conditionals over client type information by introducing new method to each provider classes

Factor out State

kind of Self Type Check

Factor out Strategy

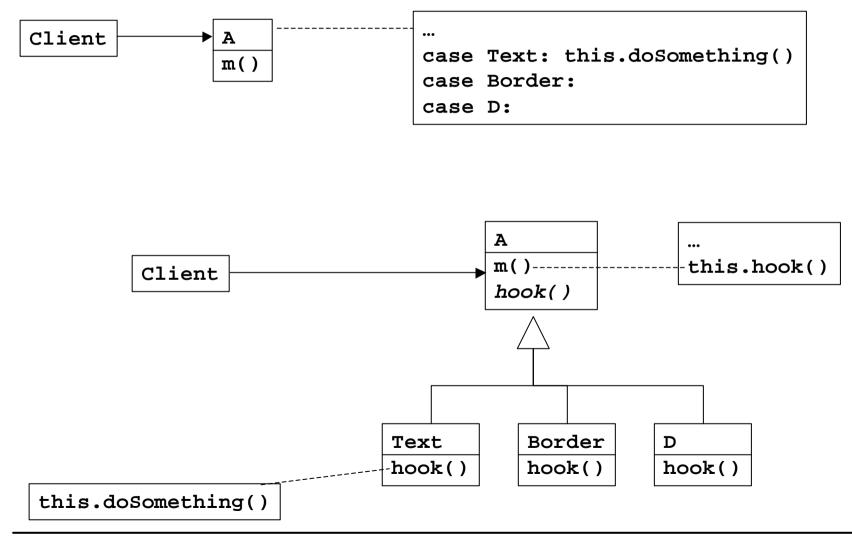
kind of Self Type Check


Introduce Null Object

eliminates null test by introducing a Null Object

Transform Conditionals into Registration

eliminates conditional by using a registration mechanism


Transform Self Type Checks

Symptoms

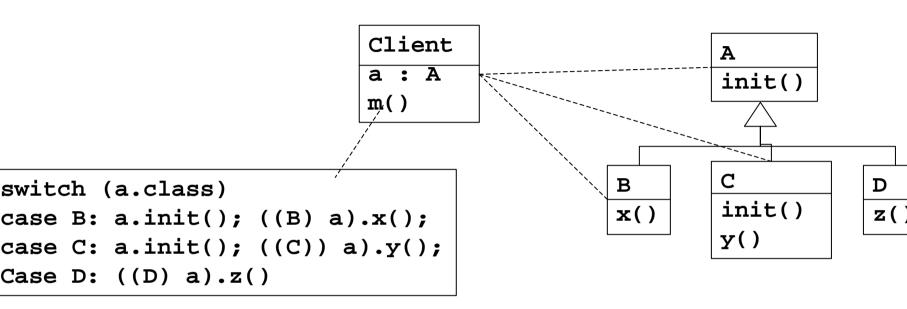
- Simple extensions require many changes in conditional code
- Subclassing impossible without duplicating and updating conditional code
- Adding new case to conditional code

Transformation

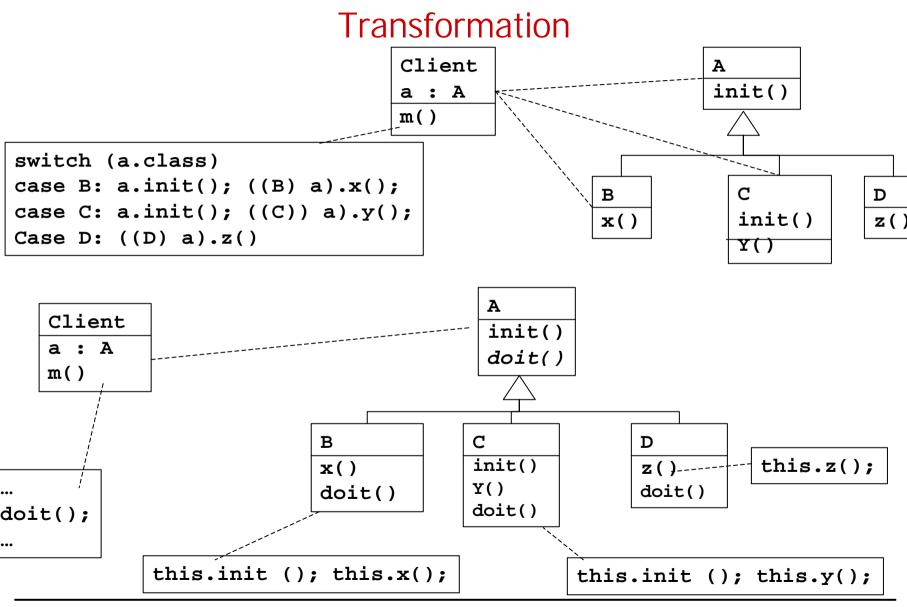
Detection

- Long methods with complex decision logic
- Look for attribute set in constructors but never changed
- Attributes to model type or finite set constants
 look for "enums" and attributes with type-related names
- Multiple methods switch on the same attribute
- grep switch 'find . -name "*.cxx" -print'

Pros/Cons/Difficulties


Pros

- New behavior is easy to add and to understand
 - a new class
- No need to change different method to add a behavior
- All behaviors share a common interface
- Cons
 - Behavior are dispersed into multiple but related abstractions
 - More classes


Difficulties

- Not always one to one mapping between cases and subclasses
- Clients may be changed to create instance of the right subclass
 - ...buy creational patterns might help

Transform Client Type Checks

- Clients explicit type checks
- Adding a new provider requires to change all the clients
- Clients are defining logic about providers

© S. Demeyer, S.Ducasse, O. Nierstrasz

Detection

- Changing clients of method when new case added
- Attribute representing a type
 - In Java: instanceof
 - x.getClass() == y.getClass()
 - x.getClass().getName().equals(....)

Pros/Cons/Difficulties

Pros

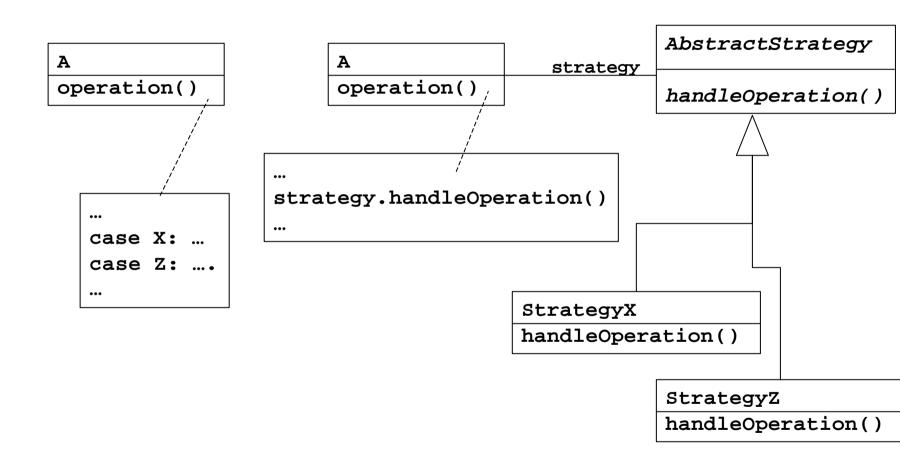
- The provider offers now a polymorphic interface that can be used by other clients
- A class represent one case
- Clients are not responsible of provider logic
- Adding new case does not impact all clients

Cons

Behavior is not grouped per method but per class

Difficulties

- Refactor the clients (Deprecate Obsolete Interfaces)
- Instance creation should not be a problem


When the Legacy Solution is the Solution

- Abstract Factory may need to check a type variable to know which class to instantiate.
 - For example streaming objects from a text file requires to know the type of the streamed object to recreate it
- If provider hierarchy is frozen
 - Wrapping the classes could be a good migration strategies)
- Software that interfaces with non-oo libraries
 - switch to simulate polymorphic calls

Factor Out Strategy

- Problem: How do you make a class whose behavior depends on testing certain value more extensible
- Apply State Pattern
 - Encapsulate the behavior and delegate using a polymorphic call

Transformation

Pros/Cons/Difficulties

Pros

- Behavior extension is well identified
- Behavior using the extension is clearer
- Change behavior at run-time

Cons

- Namespace get cluterred
- Yet another indirection

Difficulties

Behavior can be difficult to convert and encapsulate (passing parameter...)