
The ACCESS table
Column Description Remarks

module The complete name of the file where the
access of the variable occurs, including
the full path to the file.

start The line number for the beginning of the
definition of the function where the
access takes place.

start_char The character position where the access
begins

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop The line number where the access ends. Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop_char The character position where the access
ends

Obsolete. Kept only for compatibility
reasons to Sema-Audit

package For C++ projects this column will contain
the path to the source file, relative to the
root directory from where the parsing
began.
For Java projects this will have the usual
package semantic

This is useful for the measurement of
subsystem couplling.

function The name of the function where the
access ocurred.

For constructors, the name of the class
prefixes the function name (e.g.
“String::String”), due to compatibility
reasons to Sema-Audit

signature The signature of the function where the
access ocurred.

This field is void (“”) if the function has no
parameters.

name The name of the accessed variable
type The data-type of the accessed variable
provider_package This is the name of the package

(subsystem) where the accessed
variable is defined.

This is useful for the measurement of
subsystem couplling.

provider_class The name of the class where the
accessed variable was defined in.

use
(name will be probably
changed to
access_specifier)

Indicates what kind of variable was
accessed (parameter, global variable,
attributes etc.)

The column must have one following
values:
• global – for global variables
• param – for parameters
• local – for local variab.
• attr-public – for public attributes
• attr-private – for private attrib.
• attr-protected – for protected attr.

is_static Specifies if the accessed variable is
static or not

1 – if static;
0 – if not static (usual)

is_complex Specifies if the the type of the accessed
variable is a predefined or user-defined.

1 – if the type is user-defined (i.e. a class
type)
0 – if the type is predefined (e.g. int, char
etc)

is_interface This field differentiates between
accessing the interface or the data of a
class

Obsolete. Was used exclusively for the
implementation of the CDBC metric.

how_many The number of accesses to the same
variable within one function

The CALL table
Column Description Remarks

module The complete name of the file where the
call occurs, including the full path to the
file.

start The line number for the beginning of the
definition of the function where the call
takes place.

start_char The character position where the
function begins

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop The line number where the function
ends.

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop_char The character position where the
function ends

Obsolete. Kept only for compatibility
reasons to Sema-Audit

package see description for the ACCESS table
class The name of the class where the call

occurs.
If the namespace for the class is not
global this column will contain the full
name: namespace_name::class_name

function The name of the function where the call
ocurrs.

For constructors, the name of the class
prefixes the function name (e.g.
“String::String”), due to compatibility
reasons to Sema-Audit

signature The signature of the function where the
call ocurrs.

This field is void (“”) if the function has no
parameters.

access_specifier Specifies the kind of the function where
the access occurs

The column must have one following
values:
• single-function – for global functions
• public-method – for a public method
• private-method – for a private meth.
• protected-method – for a protected

method
called_package This is the name of the package

(subsystem) where the called function is
defined.

In C++ for library function this field is void.
In Java the name of the package is
provided.

called_class The name of the class where the called
function is defined.

called_function The name of the called function
called_signature The signature of the called function This field is void if the function has no

parameters.
called_access_specifier Specifies the kind of function where the

access occurs
The column must have one following
values:
• single-function – for global functions
• public-method – for a public method
• private-method – for a private meth.
• protected-method – for a protected

meth.
• library-function – for functions used,

but not defined in the within the
project.

how_many The number of invocations of the same
method within the same caller function

Regardless of the number of calls to one
function, we will have for it/them just one
entry in the table.

is_overloaded Indicates if the specified
called_function is overloaded or not.
The called_function is overloaded, only
if there is more than one implementation
having the same number of parameters.

In C++ the detection of the exact called
signature is hard. Therefore where
ambiguities appear – ie. where the called
function is overloaded – we consider a
call to each of the overloaded functions
and consequently set this field to 1.
In all the other cases, where there are no
ambiguities this field is 0.

The CLASSES table
Column Description Remarks

module The complete name of the file where the
class is declared (in C++ usually this is
the header file).

start The line number for the beginning of the
class declaration.

start_char The character position where the class
declaration begins

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop The line number where the class
declaration ends.

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop_char The character position where the class
declaration ends

Obsolete. Kept only for compatibility
reasons to Sema-Audit

package see description for the ACCESS table
class The name of the class. If the namespace for the class is not

global this column will contain the full
name: namespace_name::class_name

scope For inner classes, this field keeps the
name of the “host” class, which directly
contains the class.

For all the other classes, except the
internal ones, this field is void (“”)

is_abstract Specifies if the class is abstract 1 – if the class is abstract
0 – if the class is not abstract (is an
implementation class)

is_template Specifies if the class is a generic
(template) class (For Java this field is
always 0)

0 – if the class is generic
1 – if the class is not

NEW COLUMN
(not added yet)

Description Remarks

namespace The name of the namespace in which
the class is defined.

This field is specific for C++

The package and the namespace fields
are somehow related, as both might be
seen as mechanisms for encapsulating
subsystems; while package is rather
physical, namespace is logical.
Yet namespace is a “weaker” mechanism,
therefore package should be used for the
analysis at the subsystem level.

The DECLARE table
Column Description Remarks

module The complete name of the file where the
variable is declared

start The line number for the beginning of the
variable declaration.

start_char The character position where the variable
declaration begins

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop The line number where the variable
declaration ends.

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop_char The character position where the variable
declaration ends

Obsolete. Kept only for compatibility
reasons to Sema-Audit

namespace The name of the namespace in which the
variable is defined.

If namespace is the default one the field is
void (“”)

package see description for the ACCESS table
class The name of the class where the variable

(i.e. attribute, parameter of a method or
local var. in a method)

This field is void for global variables (in C++)

function The name of the function where the
variable (i.e. parameter or local variab.) is
defined.

This field is void for global variables (in C++)
and for attributes

For constructors, the name of the class
prefixes the function name (e.g.
“String::String”), due to
compatibility reasons to Sema-Audit

signature The signature of the function. This field is void if the function has no
parameters.

This field is void for global variables (in C++)

name The name of the declared variable
type The base data-type of the variable Does not include the pointer sign (*) or

reference sign (&) . (e.g. the base-type for
“char**” is char)

type_compl The complete data-type of the variable In this field the type is represented exactly as
it appears in the source code.

use
(name will be probably
changed to
access_specifier)

Indicates what the kind of variable was
defined.

The column must have one following
values:
• global – for global variables
• param – for parameters
• local – for local variab.
• attr-public – for public attributes
• attr-private – for private attrib.
• attr-protected – for protected attr.

is_complex Specifies if the the type of the variable is
predefined or a user-defined.

1 – if the type is user-defined (i.e. a
class type)
0 – if the type is predefined (e.g. int,
char, double etc)

is_template Specifies if the type of the variable is a
generic (template) type

0 – if the type of the var. is generic
1 – if the type of the var. is not

The FUNCS table
Column Description Remarks

module The complete name of the file where the
function/method is defined (implemented)

start The line number for the beginning of the
function definition.

start_char The character position where the function
definition begins

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop The line number where the function
definition ends.

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop_char The character position where the function
definition ends

Obsolete. Kept only for compatibility
reasons to Sema-Audit

package see description for the ACCESS table
class The name of the class This field is void for global functions (in C++)

If the namespace for the class is not
global this column will contain the full
name: namespace_name::class_name

function The name of the function For constructors, the name of the class
prefixes the function name (e.g.
“String::String”), due to
compatibility reasons to Sema-Audit

signature The signature of the function. This field is void if the function has no
parameters.

return The type of the object returned by the
function.

The return type is prefixed with the ‘const’
specifier if the function was defined so.

This field is void for constructors and
destructors.

use
(name will be probably
changed to
access_specifier)

Specifies the kind of the function The column must have one following
values:
• single-function – for global functions
• public-method – for a public method
• private-method – for a private meth.
• protected-method – for a protected

meth.
• method-definition – this value was

introduced in order to deal with the
erroneous cases in C++ where a
method is defined without being
declared in the class. Because of
the missing declaration the access-
specifier cannot be set.

storage
(name will be probably
changed to
storage_specifier)

This field keeps the storage-specifier for a
function (see Remark)

The column must have one following
values:
• ‘ ’ – for the usual, non-virtual functions
• virtual – for virtual functions
• static – for static functions
• const – if the function is constant.

ct_cyclo This field stores the value of the
cyclomatic number for the function.

This is a very used procedural metric
defined by McCabe, known also as the
cyclomatic complexity.

The INH table
Column Description Remarks

module The complete name of the file where the
derived class is declared

start The line number for the beginning of the
class declaration.

start_char The character position where the class
declaration begins

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop The line number where the class
declaration ends.

Obsolete. Kept only for compatibility
reasons to Sema-Audit

stop_char The character position where the class
declaration ends

Obsolete. Kept only for compatibility
reasons to Sema-Audit

package see description for the ACCESS table
class The name of the derived class. If the namespace for the class is not

global this column will contain the full
name: namespace_name::class_name

parent The name of the direct or indirect
ancestor class

The description wants to emphasize the
fact that the table contains the transitive
closure of the inheritance relations

attribute Specifies the way the derived class
inherits from the parent class. This
attribute influences the visibility of the
members from the parent class in the
derived class.

The column must have one following
values:
• public
• private
• protected

ct_dit Specifies the “vertical” distance in the
inheritance tree between the parent
class and the child class

This field is in fact the DIT value for the
class.

	Column
	Description
	Column
	Description
	Column
	Description
	NEW COLUMN
	(not added yet)
	Column
	Description
	Column
	Description
	Column
	Description

