
1

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Principles of Object-Oriented Design

2

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

The Object-Oriented ... Hype

§ What are object-oriented (OO) methods?
4OO methods provide a set of techniques for analysing,

decomposing, and modularising software system architectures
4In general, OO methods are characterized by structuring the

system architecture on the basis of its objects (and classes of
objects) rather than the actions it performs

§ What is the rationale for using OO?
4 In general, systems evolve and functionality changes, but objects

and classes tend to remain stable over time
4Use it for large systems
4Use it for systems that change often

3

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

OO Design vs. OO Programming
§ Object-Oriented Design

4a method for decomposing software architectures
4based on the objects every system or subsystem manipulates
4 relatively independent of the programming language used

§ Object-Oriented Programming
4construction of software systems as

u Structured collection of Abstract Data Types (ADT)
u Inheritance
u Polymorphism

4concerned with programming languages and implementation
issues

4

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Polymorphism

§ Behavior promised in the public interface of superclass objects
§ implemented by subclass objects

4 in the specific way required for the subclass

§ Why Is this Important?
4Allow subclasses to be treated like instances of their superclasses
4Flexible architectures and designs

u high-level logic defined in terms of abstract interfaces
u relying on the specific implementation provided by subclasses
u subclasses can be added without changing high-level logic

5

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Polymorphism Example

6

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Signs of Rotting Design

§ Rigidity
4code difficult to change (Continuity)
4management reluctance to change anything becomes policy

§ Fragility
4even small changes can cause cascading effects
4code breaks in unexpected places (Protection)

§ Immobility
4code is so tangled that it's impossible to reuse anything
4Composability

§ Viscosity
4much easier to hack than to preserve original design

7

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Causes of Rotting Design

§ Changing Requirements
4 is inevitable
4"All systems change during their life-cycles. This must be borne in

mind when developing systems expected to last longer than the
first version". (I. Jacobson, OOSE, 1992)

§ Dependency Management
4 the issue of coupling and cohesion
4It can be controlled!

u create dependency firewalls
u see DIP example

8

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Open-Closed Principle (OCP)

§ "Software Systems change during their life time"
4both better designs and poor designs have to face the changes;
4good designs are stable

Software entities should be open for extension,
but closed for modification

B. Meyer, 1988 / quoted by R. Martin, 1996

§ Be open for extension
4module's behavior can be extended

§ Be closed for modification
4source code for the module must not be changes

§ Modules should be written so they can be extended
without requiring them to be modified

9

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Open the door ...

§ How to make the Car run efficiently with a TurboEngine?
§ Only by changing the Car!

4 ...in the given design

10

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

... But Keep It Closed!

§ A class must not depend on a concrete class!
§ It must depend on an abstract class ...
§ ...using polymorphic dependencies (calls)

11

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Strategic Closure

"No significant program can be 100% closed "
R.Martin, “The Open-Closed Principle,” 1996

4Closure not complete but strategic

§ Use abstraction to gain explicit closure
4provide class methods which can be dynamically invoked

u to determine general policy decisions
u e.g. draw Squares before Circles

4design using abstract ancestor classes

§ Use "Data-Driven" approach to achieve closure
4place volatile policy decisions in a separate location

u e.g. a file or a separate object

4minimizes future change locations

12

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

OCP Heuristics

§ Changes to public data are always at risk to “open” the module
4They may have a rippling effect requiring changes at many

unexpected locations;
4Errors can be difficult to completely find and fix. Fixes may cause

errors elsewhere.

§ Non-private members are modifiable
4Case 1: "I swear it will not change"

u may change the status of the class
4Case 2: the Time class

u may result in inconsistent times

Make all object-data private
No Global Variables!

13

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

OCP Heuristics (2)

§ RTTI is ugly and dangerous
4If a module tries to dynamically cast a base class pointer to

several derived classes, any time you extend the inheritance
hierarchy, you need to change the module

4 recognize them by type switch-es or if-else-if structures

§ Not all these situations violate OCP all the time
4when used only as a "filter"

RTTI is Ugly and Dangerous!

14

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Liskov Substitution Principle (LSP)

Inheritance should ensure that any property proved about
supertype objects also holds for subtype objects

B. Liskov, 1987

§ The key of OCP: Abstraction and Polymorphism
4 Implemented by inheritance
4How do we measure the quality of inheritance?

Functions that use pointers or references to base classes
must be able to use objects of derived classes

without knowing it.
R. Martin, 1996

15

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Inheritance Appears Simple

class Bird { // has beak, wings,...
public: virtual void fly(); // Bird can fly

};

class Parrot : public Bird { // Parrot is a bird
public: virtual void mimic(); // Can Repeat words...

};

// ...
Parrot mypet;
mypet.mimic(); // my pet being a parrot can Mimic()
mypet.fly(); // my pet “is-a” bird, can fly

16

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Penguins Fail to Fly!

class Penguin : public Bird {
public: void fly() {
error (“Penguins don’t fly!”); }

};
void PlayWithBird (Bird& abird) {

abird.fly(); // OK if Parrot.
// if bird happens to be Penguin...OOOPS!!

}

§ Does not model: “Penguins can’t fly”

§ It models “Penguins may fly, but if they try it is error”

§ Run-time error if attempt to fly → not desirable

§ Think about Substitutability - Fails LSP

17

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Design by Contract
§ Advertised Behavior of an object:

4advertised Requirements (Preconditions)
4advertised Promises (Postconditions)

When redefining a method in a derivate class, you may only
replace its precondition by a weaker one, and

its postcondition by a stronger one
B. Meyer, 1988

⇒ Derived class services should require no more and promise no less

int Base::f(int x);
// REQUIRE: x is odd
// PROMISE: return even int

int Derived::f(int x);
// REQUIRE: x is int
// PROMISE: return 8

18

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Square IS-A Rectangle?

§ Should I inherit Square from Rectangle?

Square

?

19

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

The Answer is ...
§ Override setHeight and setWidth

4duplicated code...
4static binding (in C++)

u void f(Rectangle& r) { r.setHeight(5); }
u change base class to set methods virtual

§ The real problem
void g(Rectangle& r) {

r.setWidth(5); r.setHeight(4);
// How large is the area?

}

420! ... Are you sure? ;-)

§ IS-A relationship must refer to the behavior of the class!

20

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

LSP is about Semantics and Replacement

§ The meaning and purpose of every method and class must be
clearly documented
4Lack of user understanding will induce de facto violations of LSP

§ Replaceability is crucial
4Whenever any class is referenced by any code in any system,

any future or existing subclasses of that class must be 100%
replaceable

4Because, sooner or later, someone will substitute a subclass;
u it’s almost inevitable.

21

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

LSP and Replaceability
§ Any code which can legally call another class’s methods

4must be able to substitute any subclass of that class without
modification:

Client Service Class

Client
Service Class

Unexpected
Subclass

22

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

LSP Related Heuristic (2)

§ NOP = a method that does nothing
§ Solution 1: Inverse Inheritance Relation

4 if the initial base-class has only additional behavior
u e.g. Dog - DogNoWag

§ Solution 2: Extract Common Base-Class
4 if both initial and derived classes have different behaviors
4 for Penguins → Birds, FlyingBirds, Penguins

§ Classes with bad state
4e.g. stupid or paralyzed dogs...

It is illegal for a derived class, to override
a base-class method with a NOP method

23

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Example of Rigidity and Immobility

Copy

Read
Keyboard

Write
Printer

void Copy(){
int c;
while ((c = ReadKeyboard()) != EOF)

WritePrinter(c);
}

Write
Disk

enum OutputDevice {printer, disk};
void Copy(OutputDevice dev){

int c;
while((c = ReadKeyboard())!= EOF)

if(dev == printer)
WritePrinter(c);

else
WriteDisk(c);

}

24

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Dependency Inversion Principle

I. High-level modules should not depend on low-level
modules.
Both should depend on abstractions.

II. Abstractions should not depend on details.
Details should depend on abstractions

R. Martin, 1996

§ OCP states the goal; DIP states the mechanism

§ A base class in an inheritance hierarchy should not know
any of its subclasses

§ Modules with detailed implementations are not depended
upon, but depend themselves upon abstractions

25

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Procedural vs. OO Architecture

Procedural
Architecture

Object-Oriented
Architecture

26

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

DIP Applied on Example

Copy

Reader Writer

Keyboard
Reader

Printer
Writer

Disk
Writer

class Reader {
public:

virtual int read()=0;
};

class Writer {
public:

virtual void write(int)=0;
};

void Copy(Reader& r, Writer& w){
int c;
while((c = r.read()) != EOF)

w.write(c);
}

27

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

DIP Related Heuristic

§ Use inheritance to avoid direct bindings to classes:

Design to an interface,
not an implementation!

Client

Interface
(abstract class)

Implementation
(concrete class)

28

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Design to an Interface

§ Abstract classes/interfaces:
4 tend to change much less frequently
4 abstractions are ‘hinge points’ where it is easier to extend/modify
4shouldn’t have to modify classes/interfaces that represent the

abstraction (OCP)

§ Exceptions
4Some classes are very unlikely to change;

u therefore little benefit to inserting abstraction layer
u Example: String class

4In cases like this can use concrete class directly
u as in Java or C++

29

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

DIP Related Heuristic

§ Avoid structures in which higher-level layers depend on lower-
level abstractions:
4In example below, Policy layer is ultimately dependant on Utility

layer.

Avoid Transitive Dependencies

Policy
Layer

Mechanism
Layer

Utility
Layer

Depends on Depends on

30

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

Solution to Transitive Dependencies

§ Use inheritance and abstract ancestor classes to effectively
eliminate transitive dependencies:

Policy
Layer

Mechanism
Layer

Utility
Layer

depends on

depends on Utility
Interface

Mechanism
Interface

31

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

DIP - Related Heuristic

§ If you cannot find a satisfactory solution for the class you are
designing, try delegating responsibility to one or more classes:

When in doubt, add a level of indirection

Problem
Holder

Problem
Solver

32

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

When in doubt ...

§ It is generally easier to remove or by-pass existing levels
of indirection than it is to add them later:

XSo, Blue class re-implements
some or all of green class’s
responsibilities for efficiency
and calls red object directly

Blue class’s indirect message
calls to red class fail to meet
some criteria (e.g. real-time
constraints, etc.)

33

Object-Oriented Reengineering

© R. MarinescuLecture 5

Radu Marinescu

The Founding Principles

§ The three principles are closely related

§ Violating either LSP or DIP invariably results in violating OCP
4LSP violations are latent violations of OCP

§ It is important to keep in mind these principles to get most out
of OO development...

§ ... and go beyond buzzwords and hype ;)

