
1

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Detailed Model Capture
§ Details matter

4 Pay attention to the details!

§ Design remains implicit
4 Record design rationale when you discover it!

§ Design evolves
4 Important issues are reflected in changes to the code!

§ Code only exposes static structure
4 Study dynamic behavior to extract detailed design

2

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Detailed Model Capture

Expose the design
& make sure it stays exposed

Tie Code and Questions

Refactor to Understand
Keep track of

your understanding

Expose design

Step through the Execution

Expose collaborations

• Use Your Tools
• Look for Key Methods

• Look for Constructor Calls
• Look for Template/Hook Methods

• Look for Super Calls

Look for the Contracts

Expose contracts

Learn from the Past

Expose evolution

Write Tests
to Understand

3

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Tie Code and Questions

Problem: How do you keep track of your understanding?
Solution: Annotate the code

§ List questions, hypotheses, tasks and observations.
§ Identify yourself!
§ Annotate as comments, or as methods

4

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Refactor to Understand
Problem: How do you decipher cryptic code?
Solution: Refactor it till it makes sense

§ Goal (for now) is to understand, not to reengineer
§ Work with a copy of the code
§ Refactoring requires an adequate test base

4 If this is missing, Write Tests to Understand

§ ...and tool support
4 automatic refactorings

§ Hints:
4 Rename attributes to convey roles
4 Rename methods and classes to reveal intent
4 Remove duplicated code
4 Replace condition branches by methods
4 Define method bodies with same level of abstraction

§ Needs tool support!

5

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Look for the Contracts
Problem: Which contracts does a class support?
Solution: Look for common programming idioms, i.e. look for "customs"

of using the interface of that class

§ Look for “key methods”
4 Intention-revealing names
4 Key parameter types
4 Recurring parameter types represent temporary associations

§ Look for constructor calls
§ Look for Template/Hook methods
§ Look for super calls
§ Use your tools!

6

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Constructor Calls: Stored Result

§ Identify part-whole relationships (refining associations)
4 storing result of constructor in attribute ⇒ part-whole relation

public class Employee {
private String _name = "";
private String _address = "";
public File[] files = { };

…
public class File {

private String _description = "";
private String _fileID = "";

…
public void createFile (int position, String description, String identification)
{

files [position] = new File (description, identification);
}

Employee
_name
_address

File
_description
_fileID

1

*

7

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Constructor Calls: "self" Argument

public class Person {
private String _name = "";

…
public class Marriage {

private Person _husband, _wife;
public Marriage (Person husband,

Person wife) {
_husband = husband;
_wife = wife;}

…

Person::public Marriage marryWife (Person wife) {
return new Marriage (this, wife);

}

Person
_name
…

Marriage
_husband
_wife

1

1

1

1

Person
_name
…

Marriage
_husband
_wife

1 1

8

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Hook Methods

public class PhoneDatabase {
...
protected Table fetchTable (String tableSpec) {
//tableSpec is a filename; parse it as
//a tab-separated table representation
...};

public class ProjectDatabase
extends PhoneDataBase {

...
protected Table fetchTable (String tableSpec) {
//tableSpec is a name of an SQLTable;
//return the result of SELECT * as a table
...};

PhoneDatabase
fetchTable(tableSpec):

Table

ProjectDatabase

Hook Method

9

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Template / Hook Methods

public class PhoneDatabase {
...
public void generateHTML

(String tableSpec,
HTMLRenderer aRenderer,
Stream outStream) {

Table table = this.fetchTable (tableSpec);
aRenderer.render (table, outStream);}

…};

public class HTMLRenderer {
...
public void render (Table table, Stream outStream) {
//write the contents of table on the given outStream
//using appropriate HTML tags

…}

PhoneDatabase
generateHTML(String,

HTMLRenderer,
Stream)

Template Method

10

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Learn from the Past

Problem: How did the system get the way it is?
Solution: Compare versions to discover where code was removed

§ Removed functionality is a sign of design evolution
§ Use or develop appropriate tools
§ Look for signs of:

4 Unstable design — repeated growth and refactoring
4 Mature design — growth, refactoring and stability

11

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Step Through the Execution

Problem: How do you uncover the run-time architecture?
Solution: Execute scenarios of known use cases and step through the

code with a debugger

§ Difficulties
4 OO source code exposes a class hierarchy, not the run-time object

collaborations
4 Collaborations are spread throughout the code
4 Polymorphism may hide which classes are instantiated

§ Focussed use of a debugger can expose collaborations

12

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 3

Radu Marinescu

Conclusion
§ Setting Direction + First Contact

⇒ First Project Plan

§ Initial Understanding + Detailed Model Capture
4 Plan the work … and Work the plan
4 Frequent and Short Iterations

§ Issues
4 scale
4 speed vs. accuracy
4 politics

