
1

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Reverse Engineering

2

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Reverse Engineering
§ What and Why
§ Setting Direction

4 Most Valuable First

§ First Contact
4 Chat with the Maintainers
4 Interview during Demo

§ Initial Understanding
4 Analyze the Persistent Data
4 Study Exceptional Entities

3

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

What and Why ?

Definition
Reverse Engineering is the process of analysing a subject

system
4 to identify the system’s components and their interrelationships and
4 create representations of the system

u in another form or
u at a higher level of abstraction.

— Chikofsky & Cross, ’90

Motivation
Understanding other people’s code

u newcomers in the team,
u code reviewing
u original developers left

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

4

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

The Reengineering Life-Cycle

(0) req. analysis
(1) model capture
issues
• scale
• speed
• accuracy
• politics

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

5

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Setting Direction

§ Conflicting interests
4 technical, ergonomic, economic, political

§ Presence/absence original developers
§ Legacy architecture
4not the best

§ Which problems to tackle?
4Interesting vs. important problems?

§ Wrap, refactor or rewrite?

6

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Setting Direction

Agree on Maxims

Set direction

Appoint a
Navigator

Speak to the
Round Table

Maintain
direction

Coordinate
direction

Most Valuable First

Where to start

Fix Problems,
Not Symptoms

If It Ain't Broke
Don't Fix It

What not to doWhat to do

Keep it Simple

How to do it

Principles & Guidelines for
Software project

management
especially relevant for
reengineering projects

7

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Most Valuable First
Problem: Which problems should you focus on first?
Solution: Work on aspects that are most valuable to your customer

§ Maximize commitment, early results
4build confidence

§ Difficulties and hints:
4Which stakeholder do you listen to?
4What measurable goal to aim for?
4Consult change logs for high activity
4Play the Planning Game

8

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

First Contact
§ Where Do I Start?
§ Legacy systems are large and complex
4Split the system into manageable pieces

§ Time is scarce
4Apply lightweight techniques to assess feasibility and risks

§ First impressions are dangerous
4Always double-check your sources

9

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

First Contact

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

Verify what
you hear

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read
about it

10

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Chat with the Maintainers
Problem: What are the history and politics of the legacy system?
Solution: Discuss the problems with the system maintainers.

§ Documentation will mislead you (various reasons)
§ Stakeholders will mislead you (various reasons)
§ The maintainers know both the technical and political history

11

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Chat with the Maintainers
Questions to ask:
§ Easiest/hardest bug to fix in recent months?
§ How are change requests made and evaluated?
§ How did the development/maintenance team evolve during the

project?
§ How good is the code? The documentation?
§ Why was the reengineering project started? What do you hope

to gain?

The major problems of our work are not so much technological as
sociological.

DeMarco and Lister, Peopleware

12

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Read all the Code in One Hour
Problem: How can you get a first impression of the quality of the

source code?
Solution: Scan all the code in single, short session.

§ Use a checklist
4 code review guidelines, coding styles etc.

§ Look for functional tests and unit tests
§ Look for abstract classes and root classes that define domain

abstractions
§ Beware of comments
§ Log all your questions!

I took a course in speed reading and read “War and Peace” in
twenty minutes. It’s about Russia.

Woody Allen

13

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Read all the Code in One Hour
Pros
§ Start efficiently
4 code review guidelines, coding styles etc.

§ Judge sincerely
4 unbiased view of the software

§ Learn the developer's vocabulary

Cons
§ Obtain low abstraction
§ Doest no scale
§ Comments may mislead you

14

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Initial Understanding
§ Data is deceptive
4Always double-check your sources

§ Understanding entails iteration
4Plan iteration and feedback loops

§ Knowledge must be shared
4“Put the map on the wall”

§ Teams need to communicate
4“Use their language”

15

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Initial Understanding

understand ⇒
higher-level model

Top down

Speculate about Design

Recover
design

Analyze the
Persistent Data

Study the
Exceptional Entities

Recover
database

Bottom up

Identify
problems

16

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Analyze the Persistent Data
Problem: Which objects represent valuable data?
Solution: Analyze the database schema

§ Prepare Model
4 tables ⇒ classes; columns ⇒ attributes
4 primary keys

u naming conventions + unique indices

4 foreign keys (associations between classes)
u be aware of synonyms and homonyms

§ Incorporate Inheritance
4 one to one; rolled down; rolled up

§ Incorporate Associations
4 association classes (e.g. many-to-many associations)
4 qualified associations

§ Verification
4 Data samples + SQL statements

17

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Example: One To One

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

18

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Example: Rolled Down

Patient
id: char(5)
name: char(40)
addresss: char(60)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
name: char(40)
addresss: char(60)
company: char(40)

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

19

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Example: Rolled Up

Person
id: char(5)
name: char(40)
addresss: char(60)

kind: integer

insuranceID: char(7) «optional»
insurance: char(5) «optional»
company: char(40) «optional»

Patient
id: char(5)
insuranceID: char(7)
insurance: char(5)

Salesman
id: char(5)
company: char(40)

Person
id: char(5)
name: char(40)
addresss: char(60)

20

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Study the Exceptional Entities
Problem: How can you quickly identify design problems?
Solution: Measure software entities and study the anomalous ones

§ Use simple metrics
§ Visualize metrics to get an overview
§ Browse the code to get insight into the anomalies

21

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Questions
§ Which tools to use?
§ Which metrics to collect?
§ Which thresholds to apply
§ How to interpret the results?
§ How to identify anomalies quickly?
§ Should I trust numbers?
§ What about normal entities?

22

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

CodeCrawler: Visualizing Metrics

Use simple
metrics and
layout
algorithms.

(x,y) width

height colour

Visualize up
to 5 metrics
per node

23

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 2

Radu Marinescu

Initial Understanding (revisited)

Top down

Speculate about Design

Analyze the
Persistent Data

Study the
Exceptional Entities

understand ⇒
higher-level model

Bottom up

ITERATION

Recover
design

Recover
database

Identify
problems

