
1

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Introduction to
Object-Oriented Reengineering

2

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Course outline
1. Introduction
2. Reverse Engineering
3. Design and Architectural Extraction
4. Visualization for Program Understanding
5. Principles of Good Object-Oriented Design (part 1)
6. Principle of Good Object-Oriented Design (part 2)
7. Problem Detection
8. Testing and Migration Strategies
9. Refactoring and Restructuring

3

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

OOR
Object-Oriented Reengineering

§ Text:
4 “Object-Oriented Reengineering Patterns,” Serge Demeyer, Stéphane

Ducasse and Oscar Nierstrasz, Morgan Kaufmann and DPunkt, 2002,
ISBN 1-55860-639-4.

4 "FAMOOS Object-Oriented Reengineering Handbook", H. Baer, M. Bauer,
O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza, R.Marinescu, R. Nebbe, O.
Nierstrasz, Michael Przybilski, T. Richner, M. Rieger, C. Riva, A.-M.
Sassen, B. Schulz, P. Steyaert, S. Tichelaar, J. Weisbrod, 1999

4

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

1. Introduction
§ Goals
§ Why Reengineering ?

4 Lehman's Laws
4 Object-Oriented Legacy

§ Typical Problems
4 common symptoms
4 architectural problems & refactorings opportunities

§ Reverse and Reengineering
4 Definitions
4 Techniques
4 Patterns

5

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Goals of this course
We will try to convince you:

§ Yes, Virginia, there are object-oriented legacy systems too!

§ Reverse engineering and reengineering are essential activities in the lifecycle
of any successful software system.

4 And especially OO ones!

§ There is a large set of lightweight tools and techniques to help you with
reengineering.

§ Despite these tools and techniques, people must do job and they represent
the most valuable resource.

6

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

What is a Legacy System ?
legacy

A sum of money, or a specified article, given to another by will;
anything handed down by an ancestor or predecessor. — Oxford
English Dictionary

⇒ so, further evolution and development may be prohibitively expensive

A legacy system is a piece of
software that:

• you have inherited, and
• is valuable to you.

Typical problems with legacy systems
are:

• original developers no longer available
• outdated development methods used
• extensive patches and modifications
• missing or outdated documentation

7

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Software Maintenance - Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance

Effort
Between 50% and 75%

of global effort is spent
on maintenance !

Relative Cost
of Fixing Mistakes

Solution ?
• Better requirements engineering
• Better software methods & tools

(database schemas, CASE-tools,
objects, components, …)

8

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Requirements Engineering ?

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
⇒ even with better requirements, it is hard to predict new functions

4.1% Other

9

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

(*) process-oriented structured methods, information engineering,
data-oriented methods, prototyping, CASE-tools – not OO !

Contradiction ? No!
• modern methods make it easier to change

... this capacity is used to enhance functionality!

Modern Methods & Tools ?
[Glas98a] quoting empirical study from Sasa Dekleva (1992)
§ Modern methods(*) lead to more reliable software
§ Modern methods lead to less frequent software repair
§ and ...
§ Modern methods lead to more total maintenance time

10

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Lehman's Laws
A classic study by Lehman and Belady [Lehm85a] identified several “laws” of

system change.

Continuing change
§ A program that is used in a real-world environment must change, or become

progressively less useful in that environment.

Increasing complexity
§ As a program evolves, it becomes more complex, and extra resources are

needed to preserve and simplify its structure.

These laws are still applicable…

11

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

⇒ they do not come for free

What about Objects ?
Object-oriented legacy systems
§ = successful OO systems whose architecture and design no longer responds

to changing requirements

Compared to traditional legacy systems
§ The symptoms and the source of the problems are the same

4 ravioli code instead of spaghetti code ;)

§ The technical details and solutions may differ

OO techniques promise better
§ flexibility,
§ reusability,
§ maintainability
§ …

12

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

What about Components ?

Components are very "fragile" …
After a while one inevitably resorts to glue :)

13

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

How to deal with Legacy ?

New or changing requirements will gradually degrade original design
… unless extra development effort is spent to adapt the structure

New Functionality

Hack it in?

• duplicated code
• complex conditionals
• abusive inheritance
• large classes/methods

First …
• refactor
• restructure
• reengineer

Take a loan on your software
⇒ pay back via reengineering

Investment for the future
⇒ paid back during maintenance

14

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

FAMOOS Project

55,000

60,000

180,000

350,000

2,000,000

2,500,000

pipeline planning

user interface

embedded switching

mail sorting

network management

space mission identify components

unbundle application

portability & scalability

improve modularity

increase flexibility

extract design

FAMOOS Case studies

LOCDomain Reengineering Goal

Different reengineering goals … but common themes and problems !

15

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Common Symptoms
Lack of Knowledge
§ obsolete or no documentation
§ departure of the original

developers or users
§ disappearance of inside knowledge

about the system
§ limited understanding of entire

system
§ missing tests

Process symptoms
§ too long to turn things over to

production
4 simple changes take too long

§ need for constant bug fixes
§ maintenance dependencies
§ difficulties separating products

Code symptoms
• big build times
• duplicated code
• code smells

16

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Common Problems
Architectural Problems
§ insufficient documentation

4 non-existent or out-of-date

§ improper layering
4 too few are too many layers

§ lack of modularity
4 strong coupling

§ duplicated code
4 copy, paste & edit code

§ duplicated functionality
4 similar functionality by separate teams

Refactoring opportunities
§ misuse of inheritance

4 code reuse vs polymorphism

§ missing inheritance
4 duplication, case-statements

§ misplaced operations
4 operations outside classes

§ violation of encapsulation
4 type-casting; C++ "friends"

§ class abuse
4 classes as namespaces

17

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Some Terminology
“Forward Engineering is the traditional process of moving from high-level
abstractions and logical, implementation-independent designs to the physical
implementation of a system.”

“Reverse Engineering is the process of analyzing a subject system to identify the
system’s components and their interrelationships and create representations of
the system in another form or at a higher level of abstraction.”

“Reengineering ... is the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new
form.”

— Chikofsky and Cross [in Arnold, 1993]

18

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

• people centric
• lightweight

19

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Goals of Reverse Engineering
§ Cope with complexity

4 need techniques to understand large, complex systems
§ Generate alternative views

4 automatically generate different ways to view systems
§ Recover lost information

4 extract what changes have been made and why
§ Detect side effects

4 help understand ramifications of changes
§ Synthesize higher abstractions

4 identify latent abstractions in software
§ Facilitate reuse

4 detect candidate reusable artifacts and components

— Chikofsky and Cross [in Arnold, 1993]

20

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Reverse Engineering Techniques
§ Redocumentation

4pretty printers
4diagram generators

u e.g. Together

4cross-reference listing generators
u e.g. IDEA, SNiFF+, Source Navigator

§ Design recovery
4software metrics
4browsers, visualization tools
4static analyzers
4dynamic (trace) analyzers

21

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Goals of Reengineering
§ Unbundling

4 split a monolithic system into parts that can be separately marketed

§ Performance
4 “first do it, then do it right, then do it fast”

u experience shows this is the right sequence!

§ Design refinement
4 to improve maintainability, portability, etc.

§ Port to other Platform
4 the architecture must distinguish the platform dependent modules

§ Exploitation of New Technology
4 i.e., new language features, standards, libraries, etc.

22

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Reengineering Techniques
§ Restructuring

4automatic conversion from unstructured to structured code
4source code translation

[Chikofsky and Cross93]

§ Refactoring
4 renaming/moving methods/classes etc.

[Fowler99]

§ Data reengineering
4 integrating and centralizing multiple databases
4unifying multiple, inconsistent representations
4upgrading data models

[Sommerville, ch 32]

23

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Reverse engineering Patterns

Reverse engineering patterns
4 encode expertise and trade-offs in

u extracting design from source code,
u running systems and
u people.

§ Even if design documents exist, they are typically out of sync
with reality.

Example: Interview During Demo

24

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Reengineering Patterns

Reengineering patterns
4 encode expertise and trade-offs in transforming legacy code to

u resolve problems that have emerged.

§ These problems are typically not apparent in original design but are
due to architectural drift as requirements evolve

Example: Move Behaviour Close to Data

25

Object-Oriented Reengineering

© S. Demeyer, S.Ducasse, O. NierstraszLecture 1

Radu Marinescu

Summary
§ Software “maintenance” is really continuous development

§ Object-oriented software also suffers from legacy symptoms

§ Reengineering goals differ; symptoms don’t

§ Common, lightweight techniques can be applied to keep
software healthy

